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Abstract 

This study has sought to develop an explainable artificial intelligence (XAI) system used to 

diagnose power electronics system faults. The research deals with the necessity to introduce the 

transparent and explainable fault detection measures in complex power electronic devices such as 

converters, inverters, and power motors. It utilized a rigorous procedure that covered an extensive 

gathering of data that comes about because of different operating environments, simulation of a 

severity of faults and the execution of modern machine learning strategies. The framework 

provides explainability methods like LIME, SHAP and attention mechanisms to yield the 

transparent decision-making processes. Various learning strategies comprising deep neural 

networks, support vector machines, and multi-algorithm strategies were tested to determine their 

accuracy and computing speed in the diagnosis process. The final support structure was cross 

checked utilizing approaches of cross-materials and also tested in experimental testbeds (simulated 

and realistic). The accuracy, precision, recall, F1-score, explainability measures were used to 

evaluate the measure of performance, which showed better results than existing methods of fault 

diagnosis. The obtained outcomes suggest that the offered XAI framework is highly accurate at 

the diagnostic level, as well as gives interpretable knowledge about the mechanisms of faults; thus, 

can be successfully implemented in the industrial sector of power electronics, where the aspects 

of reliability and transparency are vital. 

Keywords: Explainable artificial intelligence (XAI) system, power electronics, fault detection, 

converters, inverters, power motors, multi-algorithm strategies.  

Introduction 

The power electronics system is essential to the electrical infrastructure of modern society, 

involving people in renewable energy conversion, motor drives, electric vehicles and automation. 

Such systems of inverters, converters, rectifiers and control circuits are subjected to severe 

conditions of operation and are vulnerable to diverse fault states which result in loss of the system, 

economic disadvantages and also safety risks. Modern applications of power electronics have 

placed more demands on reliable and efficient fault diagnosis mechanisms as a result of the 

increasing complexity and integration of power electronics in critical applications (Abro et al., 

2023). Conventional fault diagnosis strategies of the power electronics systems are based on the 

methods of the thresholds, signal processing methods and model-based techniques. Although these 

have been able to give reasonably good performance in the controlled environment, they tend to 

fail in the dynamic nature of the contemporary power electronics systems, changing environment, 

and the generation of new fault patterns. These shortcomings of traditional methods are manifested 

especially with very small faults, multi-failure cases and with systems that are operating in 

different load conditions (Haque, Shah, Malik, & Malik, 2024). With the introduction of artificial 
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intelligence and machine learning, new opportunities have appeared in fault diagnosis of power 

electronics systems (Anand, Singh, & Mekhlief, 2022). The AIs can learn complex trends based 

on past experience, adjust to variable operating environments, and identify the minute errors that 

may be discernible only by the AIs. In particular, deep learning methods have shown a great deal 

of success in recognition and classification schemes that are applicable to fault diagnosis. Yet, due 

to the fact that most of the AI algorithms are black box in nature, their implementation in critical 

power electronics purposes poses a great challenge (Sangeetha & Ramachandran, 2022). 

The fact that AI-based fault diagnosis is not interpretable raises serious concerns to their use in 

industry (Singh, Gangsar, Porwal, & Atulkar, 2023). Decision-making process should be 

understood by the engineers and the operators so that they can trust the decision made by the 

system, the regulatory compliance and the corrective measures to be adopted. This has led to the 

emergence of the whole new area of Explainable Artificial Intelligence (XAI), which is dedicated 

to designing AI systems capable of explaining their decision-making process in a clear and 

understandable way (Liu, Ramin, Flores-Alsina, & Gernaey, 2023). Explainability is all the more 

important in the context of power electronics fault diagnosis as many of its applications are safety-

critical (Qi, Liang, & Tong, 2023). The failure of power electronics can lead to equipment damage, 

loss of production operations, fire risk, and even injury of personnel. As such, the fault diagnosis 

systems should not only be able to detect the faults accurately but also a clear interpretation of the 

fault character, position and intensity should be reflected indicating the response that should be 

taken (Lang et al., 2021). Explaining AI in power electronics fault diagnosis research is still in its 

infancy phase however. Although the use of machine learning algorithms to detect faults in power 

electronics has already been examined in a number of studies, great emphasis has not been placed 

on the development of generalized frameworks that are both highly accurate and explainable 

(Moosavi, Farajzadeh-Zanjani, Razavi-Far, Palade, & Saif, 2024). Most current methods go 

towards attaining the greatest accuracy with complicated procedures or delivering simple 

explanation with simple strategies, but seldom do both, simultaneously (Hassan, 2025). The 

problem associated with the integration of explainability with advanced machine learning 

algorithms is specific in the power electronics area (Hoenig, Roy, Acquaah, Yi, & Desai, 2024). 

The many-dimensionality of the electrical parameters, temporal relationship as possible in fault 

evolution and the recommended real time diagnosis necessitate specialized generation of 

explanations. Moreover, the accounts should be adapted to various stakeholders, such as field 

technicians who need to take actionable knowledge and system designers who need close 

knowledge of the mechanism of fault (Ayoub et al., 2022). 

This study overcomes these challenges by proposing a holistic explainable AI solution in this 

regard developed specifically towards fault diagnosis related to power electronics systems. The 

framework integrates the latest machine learning algorithms and explainability capabilities that 

would allow improving the accuracy of fault detection and the transparency of decision-making 

processes. The method takes into consideration the peculiarities of the power electronics systems 

such as the variety of types of faults, the multi-parametrical character of monitoring the systems, 

and the necessity to operate in real time. The importance of such research is that besides the purely 

technical contributions, it has got practical implications that are relevant to the power electronics 

industry. Through its explainable fault diagnosis capabilities, the framework can maximize the 

confidence of the operator, making it possible to introduce predictive maintenance, as well as 

contribute to regulatory measures within safety-critical applications. The research also has the 

implication of contributing to the wider community of explainable AI by offering solutions to 

domain-specific problems and showing them how to implement these solutions. 

Research Objectives 

1. To build and deploy an explainable artificial intelligence system that achieves both the high 

accuracy of diagnosis and that has explainable decision-making in fault diagnosis of power 

electronics system, the integration of superior machine learning models with the 

explainable models like LIME, SHAP and the attention mechanism. 
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2. To assess and compare the learning capabilities of the different machine learning methods 

such as deep neural networks, support vector machines and ensemble models by training 

and comparing to the diagnostic accuracy, processing speed, and explainability on the 

different fault conditions of the power electronics devices like the inverters, converters, 

and motor drivers. 

3. To prove the efficiency of the proposed XAI framework by testing it deeply on simulated 

and real-world power electronics testbeds, to illustrate its ability to outperform the current 

fault diagnosis techniques and interpret additional information on a fault mechanism. 

Research Questions 

1. What are the possible ways of incorporating explainable artificial intelligence methods into 

the machine learning algorithm so that the methods can ensure proper fault diagnosis and 

scientific clarity in the decision-making process within power electronics systems? 

2. How do the various machine learning methods compare in accuracy of diagnostics, 

computational efficiency and explainability when used on fault diagnosis of various power 

electronics devices under various operating environments? 

3. How well does the given explainable AI approach compare to current approaches to fault 

diagnosis in accuracy, interpretability, and applicability of the real-world applications in 

power electronics? 

Significance of the Study 

The study contributes to the field of power electronics and artificial intelligence in two ways: the 

power electronics field on the one hand and artificial intelligence field on the other hand, this study 

deals with the gap between diagnostic accuracy and interpretability in fault diagnosis systems 

which is a critical issue. Within the context of power electronics, the creation of an explainable AI 

platform that is specifically adapted to the processes and expected results enables a safeguarding 

of the system reliability and the confidence of the operators in crucial industrial settings. The value 

of the study goes beyond the realms of academic research into practical real-world systems on 

which a clear fault diagnosis system can be implemented to avoid costly, catastrophic failures, cost 

of maintenance, and availability of systems. This research shows how to integrate high-

performance machine learning algorithms (based on large amounts of data) and state-of-son 

explainability methods, thereby setting a standard to be pursued in the evolution of intelligent 

power electronics systems. The fact that the framework allows interpreting what happens in the 

fault mechanics contributes to knowledge transfer between AI systems and human knowledge, 

helping humans to learn more about how systems behave and allowing them develop better 

maintenance strategies. Additionally, the study will provide support towards regulation 

requirements involving safety-critical applications of decision transparency that may be adopted 

by the power electronics market faster due to the work. 

Literature Review 

Studies on the use of artificial intelligence in power electronics fault diagnosis have advanced so 

much within the last decade, whereby scholars have looked at ways of adopting some machine 

learning techniques that seek to circumvent the shortcomings of traditional diagnostic methods. 

The initial research concentrated on neural networks and fuzzy logic networks proving that AI 

methodologies have the capability of combating the intricate error structures and nonlinear 

reaction of a system. These early efforts formed the basis of more advanced work by demonstrating 

that machine learning algorithms were capable of learning using past fault data and transferring 

what was learned to other operating conditions (Zhao & Wang, 2021). It has also made deep 

learning methods among the most promising of power electronics fault diagnosis methods, owing 

to the capacity to learn salient aspects of raw sensor readings itself (Yu & Zhang, 2023). 

Convolutional neural networks have been effectively used to process current and voltage 

waveforms to be able to detect hard to miss fault signatures present in the data that would have 

been ignored in standard signal processing techniques. Recurrent neural networks, especially Long 
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Short-Term Memory networks have proved to perform well in modelling temporal aspect in the 

evolution of faults and thus are to be used in the detection of the incipient faults and prediction of 

the failure progression. The results including their accuracy and robustness have shown these deep 

learning techniques to perform better than the conventional (Alqudah et al., 2021). The use of 

support vector machines to classify power electronics faults is well studied since it has the broad 

theoretical background and it is capable of processing a high dimensional data. It has been found 

that SVMs are very effective in isolating various fault classes even when the amount of training 

data is low and thus, they are best applicable when the amount of fault data is limited (Moradzadeh, 

Mohammadi-Ivatloo, Pourhossein, & Anvari-Moghaddam, 2021). It is critical to have nonlinear 

classification and the kernel trick of SVMs permits such nonlinear classification and as such can 

handle the complex relationships that exist between electrical parameters and fault conditions in 

power electronic systems. Other kernel functions have been explored and the radial basis functions 

kernels demonstrated good results in different fault conditions (Malashin, Tynchenko, 

Gantimurov, Nelyub, & Borodulin, 2025). 

Ensemble methods have become the focus in the research of power electronics fault diagnosis 

following the fact that they are able to invite strength of larger number of base classifiers and 

enhance overall diagnostic performance (Nampalli, Syed, Bansal, Vankayalapati, & Danda, 2024). 

Random forests and gradient boosting and AdaBoost have been used in diagnostics of faults, and 

were shown to be more accurate and robust than isolated classifiers. These techniques have a 

distinct role to play in processing noisy values as well as minimizing the influence of outliers 

which are propagated issues in practical power electronics monitoring. The redundancy that results 

naturally in the many base classifiers within the ensemble techniques also enhances reliability by 

increasing the performance of the system (Bahrami & Khashroum, 2023). The methods of feature 

extraction and selection are also important to the problem of power electronics fault diagnosis 

because the raw signal of the sensors may have large amounts of redundancy and noise whenever 

the fault occurs and this redundancy and noise may impair the performance of the classifier. Mean, 

variance, skewness, and kurtosis are some of the time-domain characteristics that have been 

extensively employed in describing fault signatures in electrical waveforms (Xiao et al., 2023). 

Frequency-domain based features obtained via Fourier transform and the wavelet-based analysis 

have been found to successful in detecting periodic disturbances and transient phenomena that 

accompanies various types of faults. Established feature extraction techniques such as the element 

of empowerment decomposition means and the distinctive mode of separation have demonstrated 

possible application in the non-stationary traits of the fault signals (Miao, Zhang, Li, Lin, & Zhang, 

2022). Data imbalance has been proposed as a challenge in the fault diagnosis of power electronic, 

where many solutions have been proposed such as the use of a synthetic generation of data and 

cost-sensitive learning (Oh et al., 2023). Fault conditions have been displayed to be rare compared 

to normal operation which may result in skewed data sets with the effect of biasing the work of 

the classifier towards normality. Synthetic Minority Oversampling Technique and its variants have 

been added to create synthetic samples of fault syndromes in order to enhance the representation 

of minority fault classes and thereby the performance of the classifier over the minority classes. 

Cost-sensitive learning methods allow classes to have different misclassification costs, to influence 

the classifier to focus more on critical fault situations that are less frequent (Ajayi, 2023). 

Signal processing works still play significant functions in preprocessing and feature extraction 

using AI based fault diagnosis systems. The time-frequency analysis in wavelet transform has 

proven to be extremely successful in time-frequency analysis of fault signals that allows the 

identification of transient effects and localized disturbances (Machlev et al., 2022). The Hilbert-

Huang transform and its variations have proved to be capable of analyzing non-stationary and 

nonlinear signals that are characteristic of power electronics systems. They can be used as part of 

preprocessing a machine learning algorithm such as an artificial neural network, which finds it 

easier to find useful structure in a complicated electrical signal after it has been processed by one 

of these techniques (Bin Akter, Sarkar Pias, Rahman Deeba, Hossain, & Abdur Rahman, 2024). 

Advances have been made in combining different sensor modes, to enhance susceptibility to fault 

diagnosis performance through offering supplementary information regarding the status of the 
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system (Moosavi, Razavi-Far, Palade, & Saif, 2024). Electrical quantities such as voltage, current, 

and power are also usually coupled with thermal measurements, vibration information and acoustic 

emissions to form overall fault signatures. The multi modal strategies have been shown to be more 

accurate in diagnosis as well as the availability of multiple sensor types in fault detection which 

might not be otherwise detected. The issue, though, is that fusion of multi-modal data proves 

difficult due to the data synchronization, feature matching, computational burden (Noura, Allal, 

Salman, & Chahine, 2025). Real-time implementation aspects have grown eminent as the power 

electronics fault diagnosis systems progress to the industrial practice. Machine learning algorithms 

have a computational complexity that shall have to be weighed with the real-time demands of the 

fault diagnosis applications (Ajayi, Mirjafari, Idowu, & Ullah, 2024). Different optimization 

algorithms such as model compression, quantization and pruning have been considered to 

minimize the computation demand with still preserving diagnostic performance. The concept of 

edge computing architectures has been proposed to facilitate localized fault diagnosis that does not 

suffer delays caused by moving through cloud-based processing, and it enhances the reliability of 

the systems (Reyes, Chengu, Gatsis, Ahmed, & Alamaniotis, 2024). 

With the advent of explainable artificial intelligence, the interpretability challenges in power 

electronics fault diagnosis have started to be solved. Local Interpretable Model-agnostic 

Explanations (LIME) have been used to give instance-level explanations on decisions in fault 

diagnosis and this explains to the operators why this fault was identified. Shapley Additive 

Explanations (SHAP) has been promising in giving both local and global explanations both in tree-

based models and neural networks (Akhtar et al., 2024). Algorithms in the neural networks have 

also attracted attention mechanisms to show the most useful input elements that are significant in 

classifying the faults in understanding the decision-making process of diagnostics (Poursaeed & 

Namdari, 2025). The existent research gaps in explainable AI in power electronics fault diagnosis 

are the absence of explainability evaluation metrics that would be robust, the minimal attention to 

the domain-specific explainability needs, and validation of explanations using domain experts. The 

majority of the current research works are more technical in understanding explainability 

algorithms rather than giving practical applications of these algorithms to power electronics 

engineers and operators. Balance between performance and explainability is a topic of current 

research, and requires varying solutions depending on the application problem (Bin Akter et al., 

2024). 

Research Methodology 

This study adopted a systematic approach in the development of explainable artificial intelligence 

framework in power electronics system’s fault diagnosis. The paper set out by gathering the most 

complete information on different power electronic devices such as inverters, converters, and 

motor drives through normal and fault conditions of the operation with the electrical parameter 

tracing that was performed by high-accuracy sensors and data collection systems of the voltage, 

current, temperature, and frequency. Various fault conditions were modeled such as short circuits, 

open circuits, component wearout, and thermal failure to produce a wide variety of data that would 

be used to train the model. The preprocessing interventions such as normalization, feature 

extraction, and dimensionality reduction were used to optimize the model under the preprocessing 

methodologies proffered to the data accumulated. A number of machine learning algorithms were 

tried and tested, such as deep neural networks, support vector machines, and ensemble methods 

with special emphasis on their diagnostic accuracy and their efficiency during the computations. 

The explainability aspect has also been incorporated through the technicality of LIME (Local 

Interpretable Model-agnostic Explanations), SHAP (SHapley Additive exPlanations), and 

attention mechanisms to give transparent decision processes. Using cross-validation methods the 

implemented framework has been validated and tested using simulated and real environments of 

power electronics testbeds. The effectiveness of the framework has been analyzed using 

performance indicators that are based on accuracy, precision, recall, F1-score, and explainability 

scores.  
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Accuracy is the most used metric for classification problems. The proportion of correct predictions 

made by the model by using the formula as shown in equation 1. 

 
Accuracy =  

tp + tn

tp + tn + fp + fn
 (1) 

 

Precision is the proportion of true positive predictions made by the model by using the formula as 

shown in equation 2. While recall is the true positive predictions out of actual positive instances 

as shown by formula in equation 3. 

 
Precision =  

tp

tp + fp
 (2) 

 

 
Recall =  

tp

tp + fn
 

(3) 

F1 score is the harmonic mean of precision and recall, calculated by the formula as shown in 

equation 4. 

 
F1 − score = 2 ∗ 

Precision ∗ Recall

Precision + Recall
 

(4) 

 

Comparative analysis was also a part of the methodology since it was necessary to show how the 

proposed explainable AI approach was superior to the already established fault diagnosis methods. 

Results and data analysis 

This study has elaborated explainable AI framework was tested on an extended dataset gathered 

at various power electronic testbeds such as three-phase inverters, DC-DC converters and motor 

drive systems. The data that was used consisted of 15,000 samples during a normal operation and 

12 different types of faults such as short circuits, open circuits, degradation of components, and 

thermal failure scenarios. Each sample consisted of 24 electrical parameters observed at 10 kHz 

sampling rate, and that created a very-multidimensional data that could be used in machine 

learning analysis. 

Performance Comparison of Machine Learning Algorithms 

The preliminary step of analyzing consisted in the comparison of how various machine learning 

algorithms perform in fault classification. The algorithms of Deep Neural Network (DNN), 

Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting (Bongiorno et al.) 

were realized and tested-out on 10-fold cross-validation. The specifications of the DNN we used 

were four hidden layers, each containing 256, 128, 64, 32 neurons based on ReLU activation of 

neurons and dropout regularization. The SVM used radial basis functions kernels and the hyper 

parameters were optimized using the grid search method. Random Forest had 100 decision trees 

of maximum depth of 15 and Gradient Boosting had 15 estimators of maximum learning rate 0.1. 
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Figure 1: Performance evaluation matrices of the proposed models 

The Deep Neural Network achieved the highest performance across all metrics, demonstrating 

96.8% accuracy with balanced precision and recall values as shown in figure 1. This superior 

performance can be attributed to the DNN's ability to learn complex nonlinear relationships 

between electrical parameters and fault conditions. The high F1-score of 96.3% indicates excellent 

balance between precision and recall, which is crucial for fault diagnosis applications where both 

false positives and false negatives carry significant consequences. SVM showed competitive 

performance with 94.2% accuracy, demonstrating its effectiveness for fault classification tasks. 

Table 1: Training time of the Models 

Algorithm Training Time (s) 

DNN 245.6 

SVM 156.3 

Random Forest 89.7 

Gradient Boosting 178.4 

 

The training time of 245.6 seconds, while higher than other algorithms, remains acceptable for 

offline training scenarios as shown in table 1. The shorter training time of 156.3 seconds makes 

SVM attractive for applications requiring frequent model retraining. Random Forest achieved 

95.1% accuracy with the fastest training time of 89.7 seconds, highlighting its efficiency for real-

time applications. Gradient Boosting provided a good balance between performance and 

computational efficiency with 95.9% accuracy and moderate training time. 

 Fault-Specific Performance Analysis 

Detailed analysis of fault-specific performance revealed variations in diagnostic accuracy across 

different fault types. The confusion matrix analysis showed that certain fault types were more 

challenging to classify than others, providing insights into the complexity of different fault 

signatures. 
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Table 2: Fault-Specific Classification Results (DNN) 

Fault Type 
True 

Positives 

False 

Positives 

False 

Negatives 

Precision 

(%) 

Recall 

(%) 

Normal Operation 1847 23 31 98.8 98.3 

Open Circuit Phase 

A 
456 12 8 97.4 98.3 

Open Circuit Phase 

B 
461 15 11 96.8 97.7 

Open Circuit Phase 

C 
458 18 14 96.2 97.0 

Short Circuit AB 234 8 6 96.7 97.5 

Short Circuit BC 238 11 9 95.6 96.4 

Short Circuit CA 235 9 7 96.3 97.1 

IGBT Degradation 189 14 18 93.1 91.3 

Capacitor 

Degradation 
201 16 22 92.6 90.1 

Thermal Fault 167 19 25 89.8 87.0 

Sensor Fault 178 21 28 89.4 86.4 

Gate Driver Fault 156 23 31 87.2 83.4 

Control System 

Fault 
142 26 35 84.5 80.2 

The fault-specific analysis reveals that normal operation and open circuit faults achieved the 

highest classification accuracy, with precision and recall values exceeding 96%. This high 

performance can be attributed to the distinct electrical signatures of these conditions, making them 

relatively easy to distinguish from other fault types. Open circuit faults in different phases showed 

consistent performance, indicating robust detection capability across all three phases of the power 

electronics system. Short circuit faults also demonstrated high accuracy, with precision values 

ranging from 95.6% to 97.5%. The consistent performance across different short circuit 

combinations suggests that the DNN effectively learned the characteristic patterns of these fault 

types. 

Component degradation faults, including IGBT and capacitor degradation, showed moderate 

performance with precision values around 92-93%. These faults are typically more challenging to 

detect due to their gradual onset and subtle changes in electrical parameters. The lower recall 

values for these fault types indicate some difficulty in detecting all instances of component 

degradation, which is expected given the progressive nature of these failures. Thermal faults 

achieved 89.8% precision and 87.0% recall, reflecting the complexity of thermal fault signatures 

that may overlap with other fault types under certain operating conditions. 

System-level faults including sensor faults, gate driver faults, and control system faults showed 

the lowest performance, with precision values ranging from 84.5% to 89.4%. These fault types are 

inherently more complex as they often manifest through indirect effects on electrical parameters 

rather than direct electrical signatures. The lower performance for these fault types highlights the 

need for additional sensor modalities or more sophisticated feature extraction techniques to 

improve detection accuracy. 

Explainability Analysis Results 

The explainability component of the framework was evaluated using LIME, SHAP, and attention 

mechanism approaches. The analysis focused on understanding which electrical parameters 

contributed most significantly to fault diagnosis decisions and how these contributions varied 

across different fault types. 

Table 3: Feature Importance Analysis Using SHAP Values 
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Electrical 

Parameter 

Average SHAP 

Value 

Standard 

Deviation 

Max. 

Contribution 

Min. 

Contribution 

Phase A Current 

RMS 
0.234 0.089 0.456 0.012 

Phase B Current 

RMS 
0.228 0.085 0.441 0.015 

Phase C Current 

RMS 
0.231 0.087 0.448 0.018 

DC Bus Voltage 0.187 0.074 0.389 0.008 

Total Harmonic 

Distortion 
0.156 0.063 0.334 0.021 

Phase A Voltage 

RMS 
0.142 0.058 0.298 0.019 

Phase B Voltage 

RMS 
0.138 0.055 0.287 0.022 

Phase C Voltage 

RMS 
0.145 0.059 0.301 0.017 

Switching 

Frequency 
0.089 0.034 0.178 0.005 

Temperature 

Sensor 1 
0.076 0.031 0.156 0.003 

Temperature 

Sensor 2 
0.073 0.029 0.148 0.004 

Power Factor 0.067 0.027 0.134 0.002 

The SHAP value analysis revealed that current RMS values from all three phases were the most 

important features for fault diagnosis, with average SHAP values ranging from 0.228 to 0.234. 

This finding aligns with domain knowledge, as current measurements are typically the most 

sensitive indicators of electrical faults in power electronics systems. The high standard deviation 

values for current parameters indicate that their importance varies significantly across different 

fault types, suggesting that the framework appropriately adapts feature importance based on 

specific fault characteristics. 

DC bus voltage emerged as the fourth most important parameter with an average SHAP value of 

0.187, reflecting its critical role in power electronics operation and fault manifestation. The 

maximum contribution of 0.389 for DC bus voltage indicates its crucial importance for certain 

fault types, particularly those affecting the DC side of the system. Total Harmonic Distortion 

showed significant importance with an average SHAP value of 0.156, highlighting the framework's 

ability to utilize advanced electrical parameters beyond basic voltage and current measurements. 

Voltage RMS values from all three phases showed moderate importance with SHAP values 

ranging from 0.138 to 0.145. While voltage measurements are essential for power electronics 

monitoring, their lower importance compared to current measurements suggests that current-based 

parameters provide more discriminative information for fault classification. Temperature 

measurements showed lower but consistent importance, with SHAP values around 0.073-0.076, 

indicating their supporting role in fault diagnosis, particularly for thermal-related failures. 

Real-time Performance Evaluation 

The framework's real-time performance was evaluated using embedded hardware platforms to 

assess its suitability for industrial deployment. The analysis included inference time, memory 

usage, and computational complexity measurements across different hardware configurations. 

Table 4: Real-time Performance Analysis 
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Hardware 

Platform 

Inference 

Time (ms) 

Memory Usage 

(Hoenig et al.) 

CPU 

Utilization 

(%) 

Power 

Consumption (W) 

Intel i7-8700K 2.3 145.6 12.4 95.2 

ARM Cortex-

A72 
8.7 89.3 34.7 15.8 

NVIDIA Jetson 

Nano 
4.1 512.4 28.9 8.3 

FPGA Zynq-

7020 
1.8 67.2 22.1 3.2 

Raspberry Pi 4 15.2 76.5 67.8 4.9 

The real-time performance analysis demonstrates the framework's adaptability to different 

hardware platforms with varying computational capabilities. The Intel i7-8700K desktop processor 

achieved the fastest inference time of 2.3 ms, well within the real-time requirements for power 

electronics fault diagnosis. The high-performance processor's superior floating-point capabilities 

and large cache memory contributed to efficient neural network execution. However, the high-

power consumption of 95.2W makes this platform unsuitable for embedded applications. 

The FPGA Zynq-7020 platform achieved comparable inference time of 1.8 ms with significantly 

lower power consumption of 3.2W, making it an attractive option for industrial deployment. The 

dedicated hardware acceleration capabilities of FPGAs enable efficient neural network inference 

while maintaining low power requirements. The modest memory usage of 67.2 MB further 

enhances the FPGA platform's suitability for resource-constrained industrial environments. 

The NVIDIA Jetson Nano provided a good balance between performance and power consumption, 

achieving 4.1 ms inference time with 8.3W power consumption. The GPU acceleration capabilities 

of the Jetson platform enable efficient parallel processing of neural network operations. However, 

the higher memory usage of 512.4 MB may limit its applicability in memory-constrained 

applications. 

The ARM Cortex-A72 platform, representative of modern industrial computers, achieved 8.7 ms 

inference time with reasonable power consumption of 15.8W. This performance level is adequate 

for most power electronics fault diagnosis applications where diagnosis intervals of 10-100 ms are 

acceptable. The Raspberry Pi 4, while showing the longest inference time of 15.2 ms, demonstrated 

the framework's scalability to low-cost embedded platforms. 

Explainability Quality Assessment 

The quality of explanations provided by different explainability techniques was evaluated through 

both quantitative metrics and qualitative assessment by domain experts. The evaluation focused 

on explanation consistency, stability, and comprehensibility across different fault scenarios. 
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Figure 2: Comparison of explainability techniques 

SHAP achieved the highest scores across all explainability quality metrics, with consistency score 

of 0.89, stability score of 0.84, and comprehensibility score of 0.91 as shown in figure 2. The high 

consistency score indicates that SHAP provides similar explanations for similar fault instances, 

which is crucial for building operator trust in the diagnostic system. The stability score reflects 

SHAP's robustness to small perturbations in input data, an important characteristic for reliable 

explanations in noisy industrial environments. The comprehensibility score, based on expert 

evaluation, confirms that SHAP explanations are readily understood by power electronics 

engineers. 

LIME showed good comprehensibility with a score of 0.85, but lower consistency and stability 

scores of 0.78 and 0.71 respectively. The local nature of LIME explanations contributes to their 

comprehensibility but may result in inconsistent explanations for similar instances.  

Table 5: Training Time of the Models 

Technique Computation Time (ms) 

LIME 34.7 

SHAP 156.2 

Attention Mechanism 12.8 

Integrated Gradients 89.4 

 

The relatively fast computation time of 34.7 ms makes LIME suitable for real-time explanation 

generation. Attention mechanisms achieved balanced performance across all metrics with scores 

ranging from 0.77 to 0.88, combined with the fastest computation time of 12.8 ms, making them 

attractive for real-time applications as shown in table 2. 

Comparative Analysis with Existing Methods 

The proposed explainable AI framework was compared with existing fault diagnosis methods 

including traditional signal processing approaches, basic machine learning methods, and state-of-

the-art deep learning techniques without explainability. 
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Figure 3: Comparison of performance  

The proposed XAI framework achieved competitive accuracy of 96.8% while maintaining high 

explainability score of 0.89, addressing the critical trade-off between performance and 

interpretability as shown in figure 3. The deep CNN black-box approach achieved slightly higher 

accuracy of 97.2% but suffered from extremely low explainability score of 0.15, making it 

unsuitable for industrial applications requiring transparent decision-making. The traditional FFT-

based method showed high explainability score of 0.95 due to its interpretable frequency domain 

analysis, but significantly lower accuracy of 87.3% limits its practical applicability. 

The comparison reveals that the proposed framework successfully bridges the gap between high-

performance machine learning and interpretable traditional methods. The false positive rate of 

1.8% and false negative rate of 2.4% are acceptable for most industrial applications, while the high 

explainability score ensures operator confidence and regulatory compliance. The medium 

deployment complexity reflects the need for specialized hardware and software infrastructure but 

remains manageable compared to more complex deep learning approaches. 

Discussion 

The creation and testing of the explainable AI framework in the use of power electronics fault 

diagnosis has presented a number of valuable lessons concerning the combination of the machine 

learning functionalities with the interpretability requirements. The findings support the idea that 

one can remain as transparent as possible in decision-making processes yet have a high diagnostic 

accuracy, which is a highly significant problem to solve to ensure the spectrum of safety-critical 

industrial applications AI system can be deployed. The high performance and accuracy of 96.8 

percent coupled with the explainability methods used build a new standard among intelligent 

systems of diagnosis of faults in power electronics. 

The diagnosis per fault type demonstrated intriguing trends in diagnoses performance based on the 

types of faults. The rates of detection of open circuit and short circuit faults were also consistently 

high, and this is due to the fact that they have unique and easily distinguished electrical signatures 

that help to form definite boundaries in the feature space. Nonetheless, the comparatively lower 

scores of component degradation and system-level failures show that these categories of failures 

are quite complicated by their nature, resulting in the insidious alterations in the electrical subjects 

and sometimes developing slowly throughout the process. This observation indicates that the next 

research objective must be connected with devising specific methods to enable the early detection 

of emergent faults perhaps with the features of temporal analysis and trend monitoring. The 

explanation analysis itself based on the SHAP values gave good information on how to proceed 

with the framework decision making process and this was helpful and in line with the current 
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thinking and approaches with respect to sharing the same when it comes to fault diagnosis which 

is an established power electronics theory and practice. 

The on-demand performance measurement with various HW platforms proves the reality of using 

the framework in the industry. The low inference time and the low power consumption of this 

implementation of the FPGA make it especially intriguing to have embedded applications in power 

electronic systems. The hardware analysis conducted shows the tradeoffs between computational 

performance, power consumption, and cost that can be used to make a decision with regard to 

choosing the platform to adopt, according to various application needs. The metric of 

explainability quality ensured that the SHAP has the highest level of reliability and understandable 

explanations, but its computational cost should be taken into account when it is used in real-time. 

The contribution of the framework to the field would be justified by the fact that the comparative 

analysis with the current methods indicates higher balance between the accuracy and explainability 

relative to both traditional and state-of-the-art methods. 

Conclusion 

This study has been able to develop and validate an explainable deep learning framework on fault 

diagnosis in power electronics systems that provides a good balance of the fault diagnosis accuracy 

and the transparency of the resultant decision. The framework has record results with 96.8 percent 

of accuracy and high explainability scores, which proves that it is possible to create AI systems 

that will be highly efficient yet explainable to use in an industry setup. The combination of the 

sophisticated machine learning model with explainability methods like SHAP, LIME, and 

attention mechanisms offers a complete solution that satisfies the rigorous demands of fault 

diagnosis in power electronics in safety settings. 

The performance reviewing on a variety of dimensions and criteria such as accuracy, real-time 

performance, and the quality of explainability has proved the practical viability of the framework 

with the industrial implementation. The analysis conducted in the fault-specific manner also helped 

reveal different levels of complexity of the different failure modes, where the open circuit fault 

and the short circuit fault were successfully analyzed with a very high detection rate, whereas the 

degradation of components and the faults presented at the system level are still the problem with 

needed improvement and attention to a researcher. The ability to execute the performance in real-

time and in a variety of hardware platforms showed the flexibility of the framework to different 

computing platforms, and FPGA implementations were in particular potential when used in 

embedded applications, as they provided excellent performance and energy efficiencies. 

The explainable part of the framework deals with a primary need under which the application of 

AI to critical parts of the industrial systems requires the operators to comprehend and trust the 

diagnostic actions. Consistent and coherent explanations were given regarding the decision-

making process through the SHAP-based explanations, which attests to validity that the current 

measurements used are main diagnostic attributes, and further witnesses a complex 

interrelationship between various electrical parameters when it comes to electrical fault diagnosis. 

Such transparency lets the operators secure diagnostic decisions against their knowledge in the 

field and act accordingly to make proper corrective actions. 

The comparison with the available techniques validated the high level of contribution of the 

framework to the field as it performs better than the traditional methods with the same level of 

interpretability, not available in the traditional deep learning black-box techniques. The study 

determines a new vessel in intelligent fault diagnosis systems that should be fairly exact and 

explainable, which may expedite the usage of related AI technologies in power electronics 

occasions where regulations and endorser acceptance are really important considerations. 

Recommendations 

Future research will involve the extension of the explainable AI in order to support multi-modal 

sensor signals such as vibration, acoustic and thermal readings in order to provide greater 

capability to diagnose more complicated faults. The combination of the temporal analysis methods 
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like the recurrent neural networks with the explainability mechanisms can possibly enhance the 

detection of slowly developing faults and can yield comments on the faulting patterns. Formulation 

of adaptive explainability systems that are able to change the extent of explanations and their 

complexity regarding the level of expertise of users and application scenarios would have added 

real value to how the framework can be utilized in multiple applications within the industry. Some 

investigation with respect to the methods of federated learning may allow some development of 

power electronics models that are built collaboratively over several power electronics installations 

without violating the privacy and security requirements of individual installations. What is more, 

studies on automated methods of validation of explanations may contribute to providing the quality 

and reliability of produced explanations without the need to engage a significant number of experts 

in their assessment. Standardized metrics to measure explainability in power electronics 

applications would make it possible to compare the various methods and lead to the establishment 

of best practices in the industry. The framework is supposed to be more focused on the integration 

of the existing power electronics monitoring systems and industrial IoT platforms to allow smooth 

implementation in the operating conditions. Lastly, extensive long-term field tests must be done 

to confirm the workability of the framework with regards to its real operating conditions and define 

the maintenance procedures to ensure that it is continuously used in the industry. 
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