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Abstract:

This research explores the characteristics of bi univalent functions related with a new function,
with focus on establishing upper estimates for the hankel determinants Hs(1).Our analysis provides
deeper understandings of the properties of these functions , advancing our understandings of bi
univalent function theory and its connections to geometric function theory.

Introduction
Let A be the family of analytic functions defined by the form

f(2) =z+ X5, mz" €Y)
In the disk U = {z € C:|z| < 1}. We examine the class A of functions that are analytic and its
subclasses S of univalent functions. The function f is considered bi univalent within S, if its inverse

g also lies in S, and satisfying g (f(2)) = z and f(gw)) = w (z € U, |w| < R(/);R(f) > 1)

and given by
gw) =w—nrnw?+ Q2rf —r)wd — (515 — 5y + )wt . .. )
Let f be function in S, and its inverse g can be extended as a function belonging to S, then f is
called bi univalent in and denoted by X. Subclasses of £ namely bi starlike (or biconvex) of order
0 < 0 <1 and have been establish by Brannan and Taha cite: 1 theses classes are non sharp
coefficient estimates |r,| and [r3| [1,2] . However the nth Taylors and Maclurin coefficients
|1, |(n € (3,4 ...)) and remain an unresolved challenge [1-5].
The pioneering work of Srivastava et al, [6] has significantly revitalized the study of bi univalent
functions in recent years, for a concise historical overview and further details refer to [1-5], [7-12]
we observe that X # ¢ and £ < S, in this context we define the subordination as follow an analytic
function £ is said to be subordinate to another function g if there exists an analytic function w: U -
U with w(0) = 0 fulfilling f(z) = g(w(z)) forall z € U. And it is denoted by
f=<g

Ma and Minda studied the integration of various subclasses of star like and convex function, they
examined the scenario where one of the function specifically % or 1+ Zl’: - (S)
to another holomorphic function ¢. To achieve this, they analyze a holomorphic function ¢ define
on the unit disk U and mapping it onto the complex plane C satisfying the following conditions

1. ¢'(0)>0.

2. ¢ isunivalent in the unit disk U.

3. The image of U under ¢ is star like with respectto 1.

4) The image of U under ¢ exhibits symmetry about the real axis.
Ravichandran and Kumar [14] introduced the class of RS™*(«) of star like function of
reciprocal order (0 < a < 1) specified by the requirement,

Re( @ ) > a.
zf'(z)

This class is generalization of star like functions and its properties have been extensively studied,
Ma and Minda works on bi star like and bi convex functions provides a frame work for analyzing
functions that are both star like and convex.

In the present work we propose the new subclass of bi univalent functions, represented by

RSy (1) (refer to definition 2) which is Ma Minda type starlike function, specifically we consider
the function f that satisfies the constraints 1-4 mentioned earlier. the function

p(z) =1+

, 1S subordinate

- (3)
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Definition 1.(see Raina and Sokot [15]; see also [16-18]. Let S* the family of functions f
belonging to A which fulfills the subordination condition

2/ @) <1+ z
f(2) 1-2z

Noonan and Thomas [19] investigated the gth Hankel determinant for an holomorphic function

f (z) with the expression

f(z)=z+ i AL

By
Th T+l o Th+q-1
Tn+1  Tn+2 o Th+q
Hy(n) = . . ) ,(@=1)
Tn+q-1 Ta+q - Tn+2q-2
In particular we have
rn T 13
H;(1) =2 13 T|,(r=1),
T3 Ty Tg
by applying the triangular in equality for H;(1), we obtain
|Hy (D) < |r3llrpr = v | = |rallry — 1oms| + |75 | 4)

Fakete and Szego [20] considered the well-known functional H,(1) [21, 22].
Their early work focused on estimating of |r; — g7, with 8 € R; f € A, then

4B -3, B =1

28
Irs = Brzl = 1+2e(_ﬁ, 0<p<1
3—4B, B<0

Inspired by the investigation of the second Hankel determinant corresponding to distinct
subclasses of £ [23_30], this paper provides estimation for the upper bounds of H;(1) for the
function with in the class RSy (4).
Objectives: This research investigate the third Hankel determinant associated with bi univalent
function related with a new function and explore the practical application, aiming to uncover the
significance and potential impacts of these function in various real world contexts.
2. About: RS (A); In this section we will establish the a sub class of X associated with a new
function
Definition: Consider 0 <A < 1. A function f (z) (1).in the class X, is define to be in the class
RSs(A). if it fulfills the following subordinations:

Azf (D) +(1-Df (z

e <o

®)
and
Awg'(w) + (1 - Dgw)

Awzg" (w) +wg'(w)

<oWw) (6)

where z,w € Uand g = f~1

3. Hankel Estimate of RS5(4);

The following lemma is required for deriving preliminary bounds and for addressing the Faketo-
Szego problem.

Lemma 1; [36]. Consider p as the class of all holomorphic functions p(z) having the structure

p(2) =1+ X5, ppz™

(7)
With Re(p(z)) > 0 forallz € U.
Then lppl <2,forneN

Lemmaz2:. Suppose p(z)=1+piz+p2z>+...€P, then
2p, = pi +t(4 —pi)
4ps = pi + 2(4 — pD)pit — (4 — pDpat® + 2(4 — pH (1 — [t[D)z
for some t,y with [t| < 1, |y| < 1.
Theorem 1. Let f(z) be given by(1) be in the class RSy (1); ,0<A<1. Then we have

2] < 14+421-21%2-223
Irams =15l < 64(1+0)*(1+32) ®)
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Proof: Let f be in the classRS5(1). 3 u, v; U = U with u(0) = v(0), |[u(2)| < 1, [v(w)| < 1,
where
Azf'(z) + (1 = Df (2)
Az?f"(z) + zf'(2)
Awg'(w) + (1 = Dgw)

Aw2g"(w) +wg'(w)
Consider the function p, g € P with expressions

p(Z)=1J_r—u(Z)=1+Z PnZ"

u(z) L

qw) = 1+v(w) 1+Z gnw"

< ¢(2). 9

and

<pWw) . (10)

and

it follows that

_p@-1_1] pi\ P\ ,
u(z) = D) +1 2 _P1Z +{ P2 > z°+\p3 —pip2 T 1 z7+ (11)
And
qw) -1 _1f at\ AR
_ _2 4 _ a1 12
v(w) —q(w)+1 > _CI1W+ G2 =~ |W +1q3 —q192 + A + (12)

substituting (11)and (12) in (3), we obtain

3 2 4
_ P2 Pi\ 5, (Ps , DPi\ 5 (Ps PiP2 D1\ ,
o(u(2) = 1+—2 +<2 + 8) +<2 + 8)2 +<2 +73 64)2 + . (13).

and
2 2 4
_ QW (q2 | 41 a3 | 91 9 192 91\ ,
p(vw)) =1+ +<2+8> +<2+8) +<2+ 5 64>W v (14)
since f € Y. has a maclurin series define by (1) computation show that the inverse g = £~ has
the expansion by (2) and we have

Azf'(z2) + (1 = Df (2) _
DT D) 1— 1+ Drz+2[(1+2)?—(1+ 2)r3]z?

+[7(1 4+ 32+ 221,13 — 4(1 4+ 31 + 342 + A8 — 3(1 + 3 )] 23
+2[5(1 + 42 + 3211, — 10(1 + 424 + 522 + 2A3) 12 +
3(1+ 44+ 4231 + 4(1 + 41+ 622 + 423 + ANy — 2(1 + 4D 5]zt + -+ (15)
and
Awg'(w) + (1 —Dg(w)
Aw2g”"(w) +wg'(w)

=1—(1+Drw+2[(1+20)r; — (1 + 21 — AH)rFw?

+[(5 + 151 + 1042 + 423)r3 — (8 + 244 + AH)1ryr3 + 3(1 + 3D, w3
+2[42(1 + 40)1ryrs — 3(1 + 40 — 422)r2 — (7 + 281 — 15421,y —

(5+ 281 —472% + 2423 — 42} — (27 + 647 + 7322 — 20A3) 1377

+2(1 + 4D)rsw* + - (16)

From (13)and (15) we obtain
b1

—(1+ D, = R (17)
2 P2 pl
2[(1 + A) - (1 + 2).)7'3] = 7 + E (18)
[7(1 + 34 + 222)ryr5 — 4(1 + 32 + 322 + 2413 — 3(1 + 3)7] = % + %1 (19)
[(5 4 281 — 472% + 2423 — 4AN)1rf — (27 + 644 + 7322 — 204331
p4 p12p2 p14—
+4(1+4/1+6/12+4/’L3+)14)r24=<7>+< 5 ) <64>. (20)

Moreover from (13) and (15), we get
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a

@ 4
2[(1 + 2015 — (1 + 24 — AD)r2] = 72 + @1 (22)
3
[(5+ 154 + 1022 + 423)r3 — (8 + 242 + 221,75 + 3(1 + 3)73] = % + % (23)

2[42(1 + 4D ryrs — 3(1 + 44 — 4A%)r2 — (7 + 281 — 1541, —

2 4
(54 281 — 4722 + 2473 — 4-/14)7‘24 — (27 + 641 + 732%2 — 20/13)1’37‘22 +2(1+42)] = % + q18q2 - Z_Z (24)

It follows from (17) and (21) that

. Thr 01
2T+ 20+ (25)
i.e
—P1= (26)
Subtracting (23) from (18) and considering (24), we obtain
2
_ P1 b2 qz
BT+ 8 +2h) @7)

Moreover subtracting (23) from (19) we obtain and considering ref: 24 and (26) we obtain
_5(1+34+)pi(p —q2)  (—6+181—74% — 82°)p3 P3 — 43
TR+ 20(1+34) 481+ A)(1+34)  12(1+3A)
pi —qi
48(1 + 32)
More ever from (25),( 27) and (28), It follows that
—5(1+ 31+ A)pf(p, — q2) | (=6 +181—72% — 8A%)p} p1(p3 — q3)

(28)

TS T e+ D21+ 20) (1 + 3) 96(1 + A)*(1 + 34) 24(1+ 30 (L+ )
N pi o pie—a) (P ar)” 29)
48(1+D)(1+31) 16(1+ D)%  16(1+)2(1+21)  64(1 + 221)2
Now According to (ref: lemal )and (lemma 2) and equation (26) we obtain
_4-pi-— o, 4-pi-
P2=Qe=—— —(t=yhpta=pi+———(t+y)
3 4 — 2 _ 4 — 2 —
pg—q3=%1+—( PIPLZ (14 3y - L2 2y oy
(4—-pi) -
— — =1tz = = y)w (30)

For particular x,y,zand wwith |t| < 1,|y| < 1,|z| < 1land jw| <1
Giventhat p € P, it follows that |p,| < 2, | by setting p, = p, we can assume with out affecting
of generality that p € [0,2], thus substituting equation (ref: 29) in (ref: 28 ) we obtain
Irary — 7§ < Hy + Hy(y + 8) + H3(y? + 6%) + Ho(y + 6)* = H(y, 6)
where

(14 + 422 — 22 = 223)p* -0
(1+ D)%+ 32 -
(47 + 1411 + 312%)p2(4 — p?)

= = >
H, = P) = S d T ra+ 2o +30) =0

(» —2)p(4 —p?)
H; = H;(4,p) = <0
3= HP) = 5o s na+
(4 —p?)?
H,=HAp)=——-=2=0
+ = Ha(hP) = See i any
our goal is to maximize H(y, &) over the domain [0,1] * [0,1] subjected to p € [0,2], H; +
2H, = 0 and H; < 0, and our analysis yields p € [0,2] because
2
HyyHss — (Hys)” <0
Thus, the function H cannot have a local maximum in the interior of the closed square. Now, we
investigate the maximum of H on the boundary oH the closed square, such thaty = 0 and 0 <

6 < 1, and we obtain

H; =H,(4p) =

H(0,8) = ®(8) = Hy + H,6 + (H; + H,)6?
we now consider two cases.
Casel
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i.e., @(6) is an nondecreasing function Hence, for fixed p € [0,2 the peak value of ®(§)
occurs
atd =1and
max®(6) = P(1)=H, +H, + H; + H,

Case2
H; + H, < 0, because 2(H3 + H4) + H2 > 0,0 < § < 1,where 0 < p < 2, and it is evident
that

2(H; + H,) + H, < 2(H; + H,)6 + H, < H,
Since ®(6) > 0. Thus, the maximum of ®(§) occursaty = 1and 0 < § < 1, and we obtain

H(1,6) =6(6) = (H; + Hy,)6 + (H, + 2H,)6 + H; + H, + H; + H,

so, from the cases of H; + H,, we obtain

max@(8) = (1) = H, + 2H, + 2H; + 4H,
Since ®(1) < 6(1), we gain max(H(y,d)) = H(1,1) on the perimeter of the [0,1] X [0,1]. let T
be a real valued function over (0,1) by

T(p) = max(H(y,6)) = H(1,1) = H; + 2H, + 2H; + 4H,.
Placing H,, H,, H; and H, in the function T, we obtain
Tp)=S+R+Q

where
(14 + 422 — 22 — 223)p*
A+ D*( 431
_ (@—2)p4-p?)
T 48(1+30)(1+ 1)
and

_ [(47 + 1412 + 312%) (1 + 22) + 3(1 + A)*(1 + 3)[p* (4 — p?)

192(1 + 1)2(1 + 2A)(1 + 34)
Our calculation showed that T(p) is an increasing function, yielding the maximum at
p=2

144+421-1%2-223

maxT(p) =T(2) = L) (13 (31)
Consequently, the proof is finish.
Theorem 2. Let f(z) be given by ref: 1 belongs to RSZ(A) 0 < A < 1. Then we have

(4 + 121 +51%2 — 423

, m<p< 2
1+ 3201+ 21)3
|T27‘3 - 7'4| S ( 1 )( ) (32)
_— <n<
l6(T + 31" Osp=m
where
=Syt V$2 —12(s; — 5)8;
3(m; —m,)
A4+ 120+ 522 —42°
1T 481 + 30 (L + A)°
(—14+ 872+ A1) +4(1 + DH(1 + 24)
SZ =

96(1+A)(1+24)(1 + 34)

oL

12(1 4+ 34)
Proof : from (25), (27) and (28), we obtain
(2+64—2-6)pi  (=3+214-5P)pi(p,—q2) | P3— s
48(1+31)(1+ )3 * 321+ 1)1+ 21)(1 +34) * 12(1 + 34)
Now inlight of lemma 2, we can assume without restriction, that that p € [0,2], such that
p1 = p. Therefore, for {i=[t| and {=ly|, we get
[rors =1l S Fy + Fo (G + ) + F5(y 4+ §2) = F($1,62)

|rors — 1| <

where
(8 — 31+ 22%)p3

BAP) = sassa+an =

(7 4+ 661 +322%)(4 — p?)p

RO =1ga+na+sna+zn =0
4—p?)(p—2
FM"’):( 48?1)J§p3/1) ><0
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We use the same proof technique as in theorem 1 . Thus, the maximum occurs at {; = 1 and
¢, = 1 in closed square [0,2],

O(p) = maX(F(Cp (2)) = F; + 2(F; + F3).
Putting F1, F2 and Fs in 0(p), we obtain

0(p) = s1p° + 5,p(4 — p?) + s3(4 — p?)

where

. 8-31+22°

1T 481+ )3 (L + 32)
_ 7+ 661+324%) +4(1 + D)1+ 224))
527 T 92(1+ A) (1 + 30 (1 + 2)
and
1
S3 =5~
12(1 + 32)

Therefore,

6'(p) = 3(s1 — 5)p* + 253p + 45,
8" (p) = 6(s1 — s2)p + 253
Suppose s; — s, > 0, it follows that s; > s,. which implies, 8'(p)’ > 0, ,as a result 6(p) is an
ascending function on [0,2]. and Therefore, achives its maximum at p=2, i.e.,
4+ 122+ 51% — 473
6(1+21)3(1+32)
conversely, if s; — s, < 0 with 8'(p) = 0, the following results are obtained
—53 + /52 — 12(s5; — 5,)5>
3(s1 — s2)

for m<p <2. and 0'(p) > 0, implies that 8(p) increases resulting in the maximum value of 6(p) on
[0,2]. being attained at p=2, implies that 6(p) is falling on [0,2], and thus, 6(p) achieves its
highest value at p=0,
i.e.,

|rors — 1| < 6(2) =

p=m=

_ < -_ -
|r2r3 T'4| = 6(0) 6(1 + 31)

This complete the proof.
Theorem 3. Let f(z) ) (ref: 1) ERS5(1),0 < A < 1. Then we have

1
—_rl <
Irs =21 < 5 (33)

s3] < ! + ! 34

BlEa+nr 200+ 20 34
Proof. By using (27) and ref: lemal we obtain (34)
we examine the underlying Fekete--Szeg06 functional, for u € C and f(z) € RS5 (1)

2
2] — P1 _ P2 — 4>
s —ure | = g e A=W Y5520
By Lemma 1, we obtain
1-w 1
— yri| <
L I A TE )
for u = 1, we gain (33)
Theorem. Let f(z) € RSz(4),0 < A < 1. Then, we have
5(1+ 31+ 22) (=6 + 181 — 712 — 813) 2
Iry| < + + (35)
4(1+ D1+ 20)(1 + 32 6(1+ A)3(1 + 31) 3(1 + 321)
| < (42 + 3001 + 41612 — 16213 + 721%) N (66 + 3901 — 42612 + 12613 — 242%) N
5l = 41+ D*A+30H)A + 41 16(1+ )21+ 20)(1 +31)(1 + 44)
21 3 1 21

e+ 2 T (A2 T2 +4n T 4A+ 2D+ ) (36)

Proof. From (30) and by Lemma 2, we obtain (36). Subtracting (26) from (22), we have
8(1 + 40)rs = (24 + 96 )11, + (24 + 481 + 46A%) 1312 + (12 + 482) 1
+(18 + 881 — 5412 + 80131, — 84(1 + 4A)1,13

—_ 2 —_
_Pa - qs n P1 (P28 q2) (37)

.Substituting properly (25), (27) and (31), we have
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(42 + 3001 + 41642 — 16223 + 7221%)p* L Baa 40)p3

8(1+4)rs = 8(1+ D)*(1 + 30) 8(1 + 1)
(66 + 3901 — 42642 + 12613 — 2444 p2(p, — q3)
B 32(1+ D)2(1 + 22)(1 + 32)
n (p2 — q2)2(12 + 481) N 84(1 + 4)p,1(p2 — q2) n Ps — Qa4

16(1 + 21)2 16(1 + A)(1 + 22) 2
By applying ref: lemal, we obtain (36)
Theorem 5. Let f(z) € RS5(4),0 < A1 < 1. Then, we have
(4 + 121 4 512 — 423
KK; — K,

6(1+ A)3(1+34)

) +K:;K, m<p<2
H;(1) < (38)

1
Kz (6(1 + 3)1))
where K, K1, K, K3, K4, and m are given by (34) , (8) , (35), (36) , and (33) , respectively.
Proof Since
|Hy (V)| < |r3llrpry — rf| = |rallry — rors| + 75| |
Substituting (8), (33), (36) and (37) in (4) we obtain (38)

Conclusion

These functions are closely related to the Koebe function, a fundamental extremal function in
geometric function theory , by investigating the third Hankel determinants of bi univalent
functions, we gain valuable insights into their properties and behaviour.The finding of this research
provide new prospective on the associated determinants of bi univalent functions, shedding light
on their characteristics and constraints. This study's results have important implications for the
study of complex analysis, particularly in the context of bi univalent functions and their
connections to the koebe function .This research contributes significantly to the field of complex
analysis by advancing our understanding of bi univalent functions.
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