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Abstract 

Classification and Regression are commonly used techniques in machine learning. The Loss 

functions are foundational to machine learning, serving as quantifiable measures of prediction 

error though which model optimization is lead. This study presents a comprehensive 

mathematical analysis of prominent loss functions utilized across classification and regression 

tasks. We present formal definitions and investigate inherent mathematical properties such as 

convexity and differentiability. Their implications for the learning process, specifically within 

gradient-based optimization frameworks. The analysis begins with fundamental regression 

losses such as Mean Squared Error and Mean Absolute Error. The analysis further extends to 

robust alternatives such as Huber and Quantile Loss. For classification, we explore binary and 

categorical Cross-Entropy, Hinge Loss, Exponential Loss by clarifying their characteristics. 

Also, we discuss practical considerations in selecting appropriate loss functions, importance of 

regularization, custom loss functions design, and the critical distinction between optimization 

objectives and evaluations metrics. The work aims to create understanding for readers with 

deeper theoretical understanding of how different loss functions shape model behaviour and 

performance in diverse machine learning applications.  

Keywords: Loss Functions; Binary Classification; Regression Analysis; Machine Learning 

Theory; Model Robustness 

1. Introduction 

The loss function is thought to be the fundamental concept for every machine learning 

algorithm. A loss function quantifies the discrepancy between a predicted output of model and 

the true or observed value for a given data point. It provides a numerical measure of how 

“wrong” a model’s prediction is. It serves as the guiding signal for the learning process and 

therefore this single value is critical. During model training, an optimization algorithm, most 

commonly gradient descent or its variants, iteratively adjusts the internal parameters of model 

with explicit goal of minimizing this loss. The final aim is to find a set of parameters that results 

in the lowest possible average loss across the entire training dataset. Since the ‘loss’ term 

generally refers to the error on a single data instance, the aggregated sum or average of these 

individual losses across the whole dataset is termed the ‘cost function’ or ‘objective function’ 

[1]. The field of machine learning vastly categorizes tasks into two primary types, one is 

regression and the other is classification. Regression problems involve prediction of a 

continuous numerical output, such as house prices, temperature, or stock prices [2]. While 

classification problems aim to predict discrete categorical labels, like whether an email is spam 

or not, identifying the type of animal in an image, or predicting a patient’s disease diagnosis. 
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The inherent nature of these tasks dictates the choice of loss function. For continuous 

predictions in regression, errors are typically measured by the numerical difference between 

predicted and true values. In classification problems, the scenario is different, a simple 

numerical difference is often meaningless. Instead, the more focus is about the likelihood of 

correct category assignment and the confidence in classifications. This fundamental difference 

necessitates distinct families of loss functions tailored to each problem type, each designed to 

capture the specific nuances of prediction error in its respective domain [3]. Mathematical 

analysis is essential to understand loss functions for their implementations in machine learning 

models. To treat loss function as an error is not sufficient. A comprehensive mathematical 

based analysis is essential for many reasons. Whether loss functions are convex or ensure 

differentiability at every point. If these functions lack convexity or are not differentiable at any 

point then what could be the alternatives. All such discussion is a top priority.  Convexity 

ensures the convergence to a global minimum for a gradient-based optimization. It avoids 

suboptimal local minima. Differentiability property of loss function ensures that gradients can 

be reliably computed. It is responsible for dictating the direction and magnitude of updated 

parameters [4]. It is essential to understand the deeply rooted principles of loss functions 

embedded in Maximum Likelihood Estimation (MLE) or Maximum A Posteriori (MA) for 

data distribution and noise[5]. Such analysis of fundamentals yields proper information about 

their behaviour. Although, the mathematical construction of loss functions directly affects the 

robustness of model to outliers. Sensitivity to noisy data and even the interpretability of learned 

parameters of loss functions can be understood by such analysis [2], [6]. Our study reveals why 

certain loss functions might be preferred over others in specific situations, even if these initially 

appear to measure the same concept of ‘error’. This analysis work is presented in different 

sections of this article. Section 2 begins with fundamental definitions. We have covered 

common loss functions used for the regression problems in section 3. The log functions used 

for binary classification problems are discussed in section 4. The overall analysis as conclusion 

is given in section 5.  

2. Fundamentals of Loss Functions and Optimizations 

This section explores the understanding of loss functions which begins with their precise 

mathematical definitions and the context in which they operate within machine learning 

paradigms. Here, we present a groundwork by formalizing what a loss function is, its role in 

empirical risk minimization, and the crucial mathematical properties that dictate its utility in 

optimization. A loss function, denoted as 𝐿(𝑦, 𝑦̂), is a mathematical function that measures the 

penalty for a model’s incorrect or imprecise prediction. Here 𝑦 represents the true (observed 

value) and 𝑦̂ represents the value predicted by the machine learning model. The output of 

𝐿(𝑦, 𝑦̂) is a non-negative real number, where a value of zero typically indicates a perfect 

prediction. It means that the predicted values 𝑦̂ becomes true value 𝑦. Whereas, the higher 

values indicate greater discrepancies [7].  Although, a loss function quantifies error for a single 

data point, the overall performance of a model across its training data is examined by an 

objective function or cost function which is usually denoted as 𝐽(𝜃). This function is the 

average or sum of individual losses over all 𝑛 data points in the dataset [1].  If 𝜃 represents the 

set of all parameters within a model, and 𝑦̂𝑖(𝜃) is the prediction for the 𝑖-th data point 𝑦𝑖 given 

these parameters, the cost function is commonly expressed as [3]:  

𝐽(𝜃) =
1

𝑁
∑ 𝐿(𝑦, 𝑦̂(𝜃))

𝑁

𝑖=1

 (1) 

 

The main objective of training a machine learning model is to find the best set of parameters 

𝜃∗ that minimizes this cost function over the training data:  
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𝜃∗ = arg min
𝜃

𝐽(𝜃) (2) 

The notion of minimizing the cost function is formally rooted in Empirical Risk Minimization 

(ERM) [8]. In ERM, the true underlying risk is approximated to minimize the empirical risk, 

which is an approximation of loss on the expected loss on unseen data. The ERM is basically 

the average loss computed over the available training data. The main concept is that the model 

will generalize effectively to new or unseen data provided that it has performed well on training 

data. For such performance, it is assumed that the training data is representative of the 

underlying data distribution. The selection of a loss function is therefore a direct commitment 

to a specific form of empirical risk, guiding the model to learn patterns that minimize this 

selected measure of error [8].  The mathematical properties are considered crucial for a loss 

function to be effectively minimized by gradient-based optimization algorithms, these 

properties are as follows: 

• Convexity: A function 𝑓(𝑥) is convex if, for any two points 𝑥1 and 𝑥2 in its domain and 

any 𝜆 ∈ [0,1], the following holds: 

𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2)  (3) 

Intuitively, the graph of a convex function lies below the line segment connecting any two 

points on the graph. For optimization, convexity is highly desirable because it ensures that 

any local minimum found by a gradient-based technique is also a global minimum [9]. 

• Differentiability: The loss function must be differentiable for a gradient-based 

optimization method to work. Accordingly, its gradient can be computed at every point. 

The gradient 𝛻𝐽(𝜃) indicates the direction of the steepest ascent of cost function. The cost 

is iteratively reduced by movement of gradient in the opposite direction [10]. Various loss 

functions fail to be differentiable at every point where they might have sharp corners. In 

such cases, the concept of subgradient is used and this approach allows optimization 

algorithms to still make progress [4]. Although,  implementing subgradient approach is 

complicated to handle but many practical algorithms can effectively use it [11].  

The optimization algorithm is based on Gradient Descent, which is considered a cornerstone. 

The Gradient Descent is driven directly by the gradient of loss function. It is an iterative first-

order optimization algorithm used to find the minimum of a function [12]. It starts with an 

initial set of model parameters 𝜃(𝑘), the algorithm updates these parameters by taking a step 

proportional to the negative of the gradient of the cost function 𝐽(𝜃) with respect to 𝜃.  

The update rule for Gradient Descent is given by:  

𝜃(𝑘+1) = 𝜃(𝑘) − 𝛼𝛻𝐽(𝜃(𝑘)) (4) 

In equation (4):  

• 𝜃(𝑘+1) represent the updated model parameters. 

• 𝜃(𝑘) represent the current model parameters. 

• 𝛼 is the learning rate. Although, it is a small scalar that determines the size of the step 

taken in the direction of the negative gradient but is carefully chosen to get efficient 

convergence. The algorithm might overshoot the minimum, if it is too large. With too 

small choice, the algorithm might take longer time to converge. 

• 𝛻𝐽(𝜃(𝑘)) is the gradient of the cost function with respect to parameters 𝜃, evaluated at 

𝜃(𝑘). It points in the direction of the steepest increase of the cost function. Its subtraction 

leads in the direction of steepest decrease, aiming towards the minimum.  

The gradient descent, through its iterative nature, enables machine learning models to learn 

from data by progressively refining their parameters to minimize prediction errors.   

3. Loss Functions for Regression 
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Generally, the regression tasks predict the continuous numerical values where loss functions 

are supposed to appropriately penalize the magnitude of error. The loss functions that are used 

in regression tasks are explained in this section. We explain these functions with their 

mathematical properties and how they become effective for the regression task.  

3.1 Mean Squared Error (MSE) 

The Mean Squared Error, also referred to as L2 Loss, is frequently used as a loss function 

regression problems. It quantifies the average of the squares of the errors. An error can be 

defined as the difference between the actual value and the predicted value.  

For a single data point, the squared error loss is given by: 

𝐿(𝑦, 𝑦̂) = (𝑦 − 𝑦̂)2 (5) 

where 𝑦 is the true value and 𝑦̂ is predicted value.  

When it is applied across a dataset of 𝑁samples, the MSE is the average of these individual 

squared errors. Thus, it becomes the cost function given as follows [4] :   

𝐽(𝜃) =
1

𝑁
∑ 𝐿(𝑦𝑖 − 𝑦̂𝑖(𝜃))

2
𝑁

𝑖=1

  (6) 

where 𝑦̂(𝜃) is the predicted value of model for the 𝑖-th true value 𝑦𝑖 which depends on the 

parameter 𝜃 of the model.  

• Mathematical Properties: 

Convexity: The MSE is convex, it is considered highly desirable property for the 

optimization.  

Differentiability: It is continuously differential at every point. It is considered a 

suitable candidate for gradient-based optimization algorithms. Using MSE, the gradient 

is always easy to compute.  

Quadratic Nature: The squared terms ensure that large errors are penalized 

disproportionately more than small errors.   

• Geometric Interpretation: Minimizing MSE corresponds to finding the line or curve 

that minimizes the Euclidean distance (L2 norm) between the observed values and the 

predicted values. It strongly quantifies the average squared deviation between actual 

values and predicted values.  

• Gradient: For a single loss function 𝐿(𝑦, 𝑦̂)=(𝑦 − 𝑦̂)2, the partial derivative with 

respect to predicted 𝑦̂ is:  
𝜕𝐿

𝜕𝑦̂
=  

𝜕

𝜕𝑦̂
(𝑦 − 𝑦̂)2 = −2(𝑦 − 𝑦̂) (7) 

The negative sign indicates that if 𝑦̂ is too low, the gradient is positive, pushing 𝑦̂ higher 

to reduce the loss, and vice-versa. Thus, linear gradient makes the optimization 

straightforward.  

• Impact on Model: MSE is highly sensitive to outlier due to its quadratic nature. This 

can lead to models that perform poorly on the majority of data if outliers are present 

[13].  MSE contributes to Gaussian Noise when errors are assumed to be normally 

distributed and homoscedastic (constant variance) [10].  

 

3.2 Mean Absolute Error (MAE) 

The Mean Absolute Error which is also known as L1 Loss which measures the average of the 

absolute differences between predictions and actual observations. Whereas, MSE makes a 

linear penalty for errors [14].  
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For a single data point, the absolute error loss is: 

𝐿(𝑦, 𝑦̂) = |𝑦 − 𝑦̂| (8) 

The cost function based on equation (8) is:  

𝐽(𝜃) =
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂(𝜃)|

𝑁

𝑖=1

  (9) 

• Mathematical Properties: 

Convexity: MAE is also a convex function, ensuring that a global minimum can be 

found.  

• Differentiability: The main difference between MSE and MAE is that MAE is not 

differential at 𝑦 = 𝑦̂. At this point, the absolute value function has a sharp corner which 

means the derivative is undefined.   

• Linear Penalty: The penalty for an error is indicated to grow linearly with the 

magnitude of the error.  

• Geometric Interpretation: When MAE minimizes, it corresponds to finding the line 

or curve that minimizes the Manhattan distance (L1 norm) between true values and 

predicted values.  

• Gradient (Subgradient): The derivative of |𝑥| is 1 for 𝑥 > 0, −1 for 𝑥 < 0, and 

undefined at 𝑥 = 0. Thus, for 𝐿(𝑦, 𝑦̂)=|𝑦 − 𝑦̂|, the partial derivative with respect to 𝑦̂ 

is [15]:  

𝜕𝐿

𝜕𝑦̂
=  {

−1
1

undefined
 

if 𝑦 − 𝑦̂ > 0,
if 𝑦 − 𝑦̂ < 0,
if 𝑦 − 𝑦̂ = 0,

 

(𝑦̂ < 𝑦)

(𝑦̂ > 𝑦)

(𝑦̂ = 𝑦)
 (10) 

At the point where the derivative is undefined, optimization algorithms often rely on a 

subgradient. The subgradient for |𝑥| at 𝑥 = 0 is any value in [−1,1]. Optimization algorithms 

often handle this issue gracefully by using optimization techniques such as Adam or RMSprop 

that are less sensitive to these non-differentiable points.  

• Impact on Model:  

Robustness to Outliers: Linear penalty by MAE makes it significantly more robust to 

outliers than MSE [2]. This is because large errors contribute proportionally, therefore 

a few extreme values do not dominate the total loss.  

Median Estimation: Unlike MSE which finds the conditional mean, minimizing MAE 

is equivalent to finding the conditional median of the target variable. Thus, this property 

contributes to its robustness.  

3.3 Huber Loss (Smooth 𝐋𝟏 Loss) 

The Huber Loss which is also known as Smooth L1 Loss, introduced by Peter Huber in 1964 

as a robust alternative to MSE. It was designed to be less sensitive to outliers while retaining 

differentiability [16]. 

The Huber Loss combines the advantages of squared loss and absolute loss. It is defined as: 

𝐿(𝑦, 𝑦̂) = {

1

2
(𝑦 − 𝑦̂)2     if |𝑦 − 𝑦̂| ≤ 𝛿 

𝛿|𝑦 − 𝑦̂| −
1

2
𝛿2         if |𝑦 − 𝑦̂| > 𝛿                

 (11) 
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In equation (11), 𝛿 > 0 is a threshold parameter. If error is small (less than 𝛿), Huber Loss 

works as squared loss, easing smooth optimization. If error is large, it works like absolute loss, 

reducing the impact of outliers.  

Its impact on model is that the Huber Loss leads to models that are more robust to outliers than 

those trained with squared loss. It surely retains differentiability and enables efficient gradient-

based optimization. When the data contains noise or occasional extreme values, it is very 

helpful.  

3.4 Quantile Loss 

The Quantile is often used in problems related to quantile regression and it has applications in 

financial forecasting, risk assessment or asymmetric cost functions. Its goal is to estimate a 

significant quantile or median of the response variable. Mathematically, the Quantile Loss 

𝐿𝜏(𝑦, 𝑦̂) for true value 𝑦, a predicted value 𝑦̂, and desired quantile 𝜏 ∈ (0,1) is defined as:  

𝐿𝜏(𝑦, 𝑦̂) = {
𝜏(𝑦 − 𝑦̂)      if  𝑦̂ < 𝑦 

(1 − 𝜏)(𝑦 − 𝑦̂)       if 𝑦̂ ≥ 𝑦               
 (12) 

The utilization of Quantile Loss allows the model to predict different conditional quantiles 

which is helpful for modelling heteroscedasticity and prediction intervals. Thus, it impacts on 

model [17].  The choice of loss function, especially in regression tasks, influences not only the 

optimization process but also the robustness and interpretability of the model. We have 

discussed two important loss functions that address shortcomings of traditional losses from the 

use of Mean Squared Error (MSE) and Mean Absolute Error (MAE) are Huber Loss and 

Quantile Loss.  

4. Loss Functions for Binary Classification 

In binary classification, the goal is to assign inputs to one of two class, typically labelled as 

𝑦 ∈ {0,1} or 𝑦 ∈ {−1,1}, unlike regression tasks where target variable 𝑦 is continuous. The 

machine learning models used for binary classification are referred as classifiers. The choice 

of loss function directly impacts the classifier’s performance, learning behaviour, and 

theoretical bond. A loss function 𝐿𝜏(𝑦, 𝑦̂) which generally measures the discrepancy between 

true label 𝑦 and model’s predicted value 𝑦̂, so the prediction 𝑦̂ may be a score, a probability, 

or a hard label [2]. We describe here some of the commonly used loss functions for binary 

classification problems.  

4.1 Binary Cross-Entropy (Log Loss) 

The Binary Cross-Entropy (BCE) is also known as Log Loss. It is considered predominant loss 

function for training binary classifier that output a probability estimate. Given a dataset of 

input-label pairs (𝑥𝑖, 𝑦𝑖)  with 𝑦𝑖 ∈ {0,1} and a model producing a predicted probability 𝑝̂𝑖 =
𝑃(𝑦 = 1|𝑥𝑖), the BCE is for a single example is defined as:  

𝐿(𝑦, 𝑝̂)=(𝑦log(𝑝) + (1 + 𝑦)log(1 − 𝑝)) (13) 

The total loss is the average of 𝐿(𝑦, 𝑝̂) over all examples [5].  

For a probabilistic interpretation, the BCE arises directly from the log-likelihood of a Bernoulli 

distribution. Maximizing the likelihood of the observed labels under a Bernoulli model, given 

as under:  

𝑃(𝑦 | 𝑥𝑖) =  𝑝̂𝑦(1 − 𝑝̂)1−𝑦  (14) 

Equation (14) is equivalent to minimizing the sum of BCE terms. Such connection is a 

guarantee that the classifier’s outputs are well-calibrated probability estimate.  

4.2 Logistic Loss 
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The Logistic Loss is commonly used in logistic regression which is also a type of binary 

classification. In mathematical formulation, it can be defined as:  

𝐿(𝑦, 𝑦̂) = log(1 + exp(𝑦𝑦̂)) (15) 

where 𝑦 ∈ {−1,1}, and 𝑦̂ is predicted value. Logistic loss is convex, smooth, and differentiable. 

It is considered as a best among the loss functions for binary classification gradient-based 

optimizations. Its impact is that it encourages well-calibrated probabilities and often performs 

well when class distributions are balanced [5].   

4.3 Hinge Loss 

The cost function of Hinge Loss is used in support vector machines (SVM), It is defined as: 

𝐿(𝑦, 𝑦̂) = max(0,1 − 𝑦𝑦̂) (16) 

Hinge Loss is convex but not differentiable at the hinge point. It ensures margin maximization 

by penalizing not only incorrect predictions but also correct ones which are too close to the 

decision boundary. Models trained using Hinge Loss tend to generalize smoothness to the 

margin principle. The models employing this cost function do not yield probability estimate 

and are less robust to noisy labels [18].  

4.4 Exponential Loss 

The Exponential Loss is used famously in boosting algorithms like AdaBoost. It provides a 

very aggressive penalty for misclassified points, it is given by: 

𝐿(𝑦, 𝑦̂) = exp(−𝑦𝑦̂) (17) 

This cost function is convex and differentiable. It places exponentially increasing penalties on 

misclassified examples. However, such its usage can lead to overfitting, particularly when the 

dataset contains noisy labels or outliers. While exponential loss drive models to focus on 

complicated cases [19].  

5. Conclusions 

In this work, we have presented a demanding mathematical analysis of important loss functions 

implemented in regression and binary classification problems. For regression, we have 

examined Mean Squared Error (MSE), Mean Absolute Error (MAE), Huber Loss and Quantile 

Loss. Each of them is well explained for their distinct characteristics with their trade-offs 

between sensitivity to outliers, interpretability and robustness. MSE being optimal under 

Gaussian assumptions, suffers from high sensitivity to outliers. MAE yields a better alternative 

but lacks differentiability. Huber Loss interpolates between these two, yielding robustness with 

smooth optimization properties. Quantile Loss, on the other hand, enables estimation of 

conditional quantiles, making it suitable for modelling asymmetric distributions and 

uncertainty. For binary classification, we have discussed Binary Cross-Entropy (Log Loss), 

Logistic Loss, Hinge Loss, and Exponential Loss. These cost functions were analysed in terms 

of convexity, differentiability, margin behaviour, and probabilistic interpretation. Binary 

Cross-Entropy and Logistic Loss are probabilistically based and widely utilized for their 

compatibility with gradient-based optimizations and well-calibrated outputs. Hinge Loss, 

favourable for SVMs, ensures margin maximization and provides generalization in high-

dimensional spaces. Exponential Loss as used in boosting algorithms, aggressively penalizes 

misclassifications but may be less robust to noisy problems. In our discussion, we have 

emphasized how mathematical properties of each loss function. We explained how convexity, 

smoothness, and differentiability affect the learning dynamics, convergence and predictive 

quality of machine learning models. By choosing suitable loss functions based on the task and 

data, the researchers or practitioners can improve both the effectiveness and interpretability of 

predictive models.  This mathematical analysis servers as grounded reference for researchers 
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and practitioners aiming to make informed decisions about loss function choice in regression 

and binary classification problems.  
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