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Abstract 
This paper explores the domination number of the splitting graph associated with higher powers of 

cycle graphs. We begin by computing the domination number of the splitting graph of the square 

and cube of the cycle graph Cξ. Through analysis and observed patterns, we propose a general 

conjecture regarding the domination number of the splitting graph of the κth power ofCξ. These 

results extend the existing work on domination parameters in transformed graphs and provide a 

foundation for further theoretical development and applications. 

 

1. Introduction 
Graph theory has experienced rapid development in recent decades, finding applications across a 

range of disciplines including computer science, biology, linguistics, and social sciences. Among 

its many branches, the study of domination in graphs stands out as a central area due to both its 

theoretical appeal and practical significance. 

The concept of domination in graphs dates back to the 19th century, when de Jaenisch (1862) 

investigated the problem of placing the minimum number of queens to dominate all squares on an 

n×n chessboard [1]. A formal framework for domination emerged in the mid-20th century. Claude 

Berge (1958) introduced the idea of the "coefficient of external stability", which we now recognize 

as the domination number of a graph [2]. Ore (1962) refined this concept by formally defining the 

domination number γ(G) and the notion of a dominating set [3]. 

Further significant contributions were made by Cockayne and Hedetniemi (1977), who introduced 

the notation γ(G) for the domination number and compiled foundational results that sparked an 

explosion of research in the field [7]. In the decades that followed, extensive studies have focused 

on domination in various classes of graphs, including trees, cycles, and their generalizations. 

Important progress has also been made in identifying bounds for the domination number. Shepard 

et al. (1989) [10] and Reed (1996) [11] refined bounds for connected graphs. Behzad et al. (2007) 

[12] examined Petersen graphs P(ξ, κ), while Vaidya et al. (2012) [13] explored domination in 

splitting graphs of paths and cycles. Kazemnejad et al. (2019, 2020) [14, 15] studied total and 

middle domination in transformed graphs. More recently, Murugan et al. (2022) [16] provided 

bounds for domination numbers of square graphs. Domination theory has also been discussed from 

broader perspectives in works like those by Guichard [17], Brigham et al. [18], and Ribeiro et al. 

[19], highlighting its interdisciplinary applications and algorithmic challenges. 
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Our current work continues in this direction by considering the splitting graph of the  power of 

cycle graphs. The κth power Gκ of a graph G connects any two vertices with distance at most κ, 

while the splitting graph Sp(G) is formed by inserting a new vertex for every edge in G and 

connecting it to the end points of that edge. 

In this paper, we calculate the domination number γ(Sp(Cξ
κ)) for κ = 2,3 and propose a conjecture 

for general κ. 

 

2. Definitions and Preliminaries 

Cycle Graph: A graph Cξ is a cycle with nn vertices connected in a closed chain. 

Graph Power: The κth power of a graph G, denoted Gκ, is a graph on the same vertex set where 

two vertices are adjacent if their distance in G is at most κ. 

Splitting Graph: Given a graph G(V, E), the splitting graph Sp(G) is obtained by adding a vertex 

for each edge e ∈ E(G), and joining it to the endpoints of e. 

Dominating Set: A subset D ⊆ V(G) is a dominating set if every vertex in V(G)\D is adjacent to 

at least one vertex in D. 

Domination Number: The domination number γ(G) is the minimum cardinality of a dominating 

set in G. 

 

3.  Main Results 
In this section, we investigate the domination number of the splitting graph of the higher powers of 

cycle graphs. Our study is motivated by a result due to Vaidya et al. [13], who determined the 

domination number of the splitting graph of a standard cycle graph . We aim to extend their 

findings by computing the domination number of the splitting graph of Cξ
κ for κ = 2,3, and by 

proposing a conjecture for general κ. These results highlight how the structure of a graph changes 

under the power and splitting operations, and how these changes affect domination parameters. 

Theorem 3.1 (Vaidya et al. [13]) 

Let 𝐶𝜉 be a cycle graph with ξ ≥ 3. Then the domination number of the splitting graph 𝑆𝑝(𝐶𝜉) is 

given by 

γ(𝑆𝑝(𝐶𝜉))) =

{
 
 

 
       

ξ

2
                     for ξ ≡ 0 (mod 4)

      
ξ + 2

2
                     for ξ ≡ 2 (mod 4)

          
ξ + 1

2
                  for ξ ≡ 1,3 (mod 4)

 

 

Building upon this, we now consider the splitting graphs of Cξ
2 and Cξ

3. Our goal is to determine 

their domination numbers and to generalize the pattern observed. 

 

Theorem 3.2 For ξ ≥ 7, 
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γ (Sp(Cξ
2)) = {

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

2ξ

7
          for ξ ≡ 0 mod(7)

2ξ + 5

7
          for ξ ≡ 1 mod(7)

2ξ + 3

7
          for ξ ≡ 2 mod(7)

2ξ + 8

7
          for ξ ≡ 3 mod(7)

2ξ + 6

7
          for ξ ≡ 4 mod(7)

2ξ + 4

7
          for ξ ≡ 5 mod(7)

2ξ + 2

7
          for ξ ≡ 6 mod(7)

  

 

Proof 

 

Let ω1 , ω2, ω3, … , ωξ are vertices of Cξ
2 and ω1

′ , ω2
′ , ω3

′ , … , ωξ
′  are the corresponding vertices to 

ω1 , ω2, ω3, … , ωξ, which are added to form Sp(Cξ
2). Since N(ωi) =

{ωi−2, ωi−1, ωi+1, ωi+2, ωi−2
′ , ωi−1

′ , ωi+1
′ ωi+2

′  and N(ωi
′) = {ωi−2, ωi−1, ωi+1, ωi+2}, so atleast one 

vertex from ωi−2, ωi−1, ωi+1 and ωi+2 must belong to any dominating set of p(Cξ
2). Consequently 

|S| ≥
2ξ

7
. Now consider the following subsets for 0 ≤  j < ⌊

ξ

7
⌋: 

 

S = {ω3+7i, ω5+7i}, for ξ ≡ 0  mod{7} such that |S| =
2ξ

7
. 

S = {ω3+7i, ω5+7i, ωξ−2}, for ξ ≡ 1  mod{7} such that |S| =
2(ξ−1)

7
+ 1 =

2ξ+5

7
. 

S = {ω3+7i, ω5+7i, ωξ−2}, for ξ ≡ 2  mod{7} such that |S| =
2(ξ−2)

7
+ 1 =

2ξ+3

7
. 

S = {ω3+7i, ω5+7i, ωξ−4, ωξ−2}, for ξ ≡ 3  mod{7} such that |S| =
2(ξ−3)

7
+ 2 =

2ξ+8

7
. 

S = {ω3+7i, ω5+7i, ωξ−4, ωξ−2}, for ξ ≡ 4  mod{7} such that |S| =
2(ξ−4)

7
+ 2 =

2ξ+6

7
. 

S = {ω3+7i, ω5+7i, ωξ−4, ωξ−2}, for ξ ≡ 5  mod{7} such that |S| =
2(ξ−5)

7
+ 2 =

2ξ+4

7
. 

S = {ω3+7i, ω5+7i, ωξ−4, ωξ−2}, for ξ ≡ 6  mod{7} such that |S| =
2(ξ−6)

7
+ 2 =

2ξ+2

7
. 

 

We propose that S forms a dominating set, since N(ω3+7i) =
{ω1+7i, ω2+7i, ω4+7i, ω5+7i, ω′1+7i, ω′2+7i, ω′4+7i, ω′5+7i} and 
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N(ω5+7i)={ω3+7i, ω4+7i, ω6+7i, ω7+7i, ω
′
3+7i, ω

′
4+7i, ω

′
6+7i, ω′7+7i} such that ⌊

2ξ

5
⌋  vertices are 

dominated by vertex of the form N(ω3+7i) and N(ω5+7i)the rest are dominated by ωξ−2 , for ξ ≡

 1,2  mod (7) and by ωξ−2 or ωξ−4, for ξ ≡  3,4,5,6  mod (7). Also each S is a minimal dominating 

set because by removing the vertex ω5+7i, the vertex ω′3+7i will not be dominated by any of the 

vertices. Hence,  

γ (Sp(Cξ
2)) = {

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

2ξ

7
          for ξ ≡ 0 mod(7)

2ξ + 5

7
          for ξ ≡ 1 mod(7)

2ξ + 3

7
          for ξ ≡ 2 mod(7)

2ξ + 8

7
          for ξ ≡ 3 mod(7)

2ξ + 6

7
          for ξ ≡ 4 mod(7)

2ξ + 4

7
          for ξ ≡ 5 mod(7)

2ξ + 2

7
          for ξ ≡ 6 mod(7)

  

 

 

Theorem 3.3 For ξ ≥ 10, 

    

γ (Sp(Cξ
3)) = {

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

ξ

5
          for ξ ≡ 0 mod(10)

ξ + 4

5
           for ξ ≡ 1, 6 mod(10)

ξ + 3

5
           for ξ ≡ 2, 7 mod(10)

ξ + 2

5
           for ξ ≡ 3, 8 mod(10)

ξ + 6

5
           for ξ ≡ 4 mod(10)

ξ + 5

5
           for ξ ≡ 5 mod(10)

ξ + 1

5
           for ξ ≡ 9 mod(10)

  

 

Proof 
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Let ω1 , ω2, ω3, … , ωξ are vertices of Cξ
3 and ω1

′ , ω2
′ , ω3

′ , … , ωξ
′  are the corresponding vertices to 

ω1 , ω2, ω3, … , ωξ, which are added to form Sp(Cξ
3). Since N(ωi) =

{ωi−3, ωi−2, ωi−1, ωi+1, ωi+2, ωi+3, ωi−3
′ , ωi−2

′ , ωi−1
′ , ωi+1

′ ωi+2
′ ω′i+3, } and N(ωi

′) =

{ωi−3, ωi−2, ωi−1, ωi+1, ωi+2, ωi+3}, so atleast one vertex from ωi−3, ωi−2, ωi−1, ωi+1, ωi+2 and 

ωi+3 must belong to any dominating set of Sp(Cξ
2).. Consequently |S| ≥

2ξ

7
. Now consider the 

following subsets for 0 ≤  j < ⌊
ξ

10
⌋: 

 

S = {ω4+10i, ω7+10i}, for ξ ≡ 0  mod (10) such that |S| =
ξ

5
. 

S = {ω4+10i, ω7+10i, ωξ−3}, for ξ ≡ 1  mod (10) such that |S| =
2(ξ−1)

10
+ 1 =

ξ+4

5
. 

S = {ω4+10i, ω7+10i, ωξ−3}, for ξ ≡ 2  mod (10) such that |S| =
2(ξ−2)

10
+ 1 =

ξ+3

5
. 

S = {ω4+10i, ω7+10i, ωξ−3}, for ξ ≡ 3  mod (10) such that |S| =
2(ξ−3)

10
+ 1 =

ξ+2

5
. 

S = {ω4+10i, ω7+10i, ωξ−6, ωξ−3}, for ξ ≡ 4  mod (10) such that |S| =
2(ξ−4)

10
+ 2 =

ξ+6

5
. 

S = {ω4+10i, ω7+10i, ωξ−6, ωξ−3}, for ξ ≡ 5  mod (10) such that |S| =
2(ξ−5)

10
+ 2 =

ξ+5

5
. 

S = {ω4+10i, ω7+10i, ωξ−6, ωξ−3}, for ξ ≡ 6  mod (10) such that |S| =
2(ξ−6)

10
+ 2 =

ξ+4

5
. 

S = {ω4+10i, ω7+10i, ωξ−6, ωξ−3}, for ξ ≡ 7  mod (10) such that |S| =
2(ξ−7)

10
+ 2 =

ξ+3

5
. 

S = {ω4+10i, ω7+10i, ωξ−6, ωξ−3}, for ξ ≡ 8  mod (10) such that |S| =
2(ξ−8)

10
+ 2 =

ξ+2

5
. 

S = {ω4+10i, ω7+10i, ωξ−6, ωξ−3}, for ξ ≡ 9  mod (10) such that |S| =
2(ξ−9)

10
+ 2 =

ξ+1

5
. 

 

We propose that S forms a dominating set, since N(ω4+10i) =
{ω1+10i, ω2+10i, ω3+10i, ω5+10i, ω6+10i, ω7+10i, ω′1+10i, ω′2+10i, ω′3+10i, ω′5+10i, ω′6+10i, ω′7+10i and 
N(ω7+10i) =
{ω4+10i, ω5+10i, ω6+10i, ω8+10i, ω9+10i, ω10+10i, ω′4+10i, ω′5+10i, ω′6+10i, ω′8+10i, ω′9+10i, ω′10+10i such 

that ⌊
𝜉

5
⌋  vertices are dominated by vertex of the form 𝑁(𝜔4+10𝑖) or 𝑁(𝜔7+10𝑖) the rest are 

dominated by 𝜔𝜉−3 , for 𝜉 ≡  1,2,3  𝑚𝑜𝑑 (10) and by 𝜔𝜉−3 or 𝜔𝜉−6, for 𝜉 ≡  4,5,6,7,8,9  𝑚𝑜𝑑 (10). 

Also each 𝑆 is a minimal dominating set because by removing the vertex 𝜔7+10𝑖, the vertex 𝜔′4+10𝑖 
will not be dominated by any of the vertices. Hence,  
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γ (𝑆𝑝(𝐶𝜉
3)) = {

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝜉

5
          𝑓𝑜𝑟 𝜉 ≡ 0 𝑚𝑜𝑑 (10)

𝜉 + 4

5
           𝑓𝑜𝑟 𝜉 ≡ 1, 6 𝑚𝑜𝑑 (10)

𝜉 + 3

5
           𝑓𝑜𝑟 𝜉 ≡ 2, 7 𝑚𝑜𝑑 (10)

𝜉 + 2

5
           𝑓𝑜𝑟 𝜉 ≡ 3, 8 𝑚𝑜𝑑 (10)

𝜉 + 6

5
           𝑓𝑜𝑟 𝜉 ≡ 4 𝑚𝑜𝑑 (10)

𝜉 + 5

5
           𝑓𝑜𝑟 𝜉 ≡ 5 𝑚𝑜𝑑 (10)

𝜉 + 1

5
           𝑓𝑜𝑟 𝜉 ≡ 9 𝑚𝑜𝑑 (10)

  

Conjecture 3.1 For 𝜉 ≥ 3𝜅 + 1, 

 

𝛾 (𝑆𝑝(𝐶𝜉
𝜅)) =

{
 
 

 
 

2𝜉

3𝜅 + 1
                                                                          for ξ ≡ 0 mod (3κ + 1)

2(ξ − i)

3κ + 1
+ 1                                                for ξ ≡ 1,2,3,… , κ mod (3κ + 1)

2(ξ − i)

3κ + 1
+ 2                            for ξ ≡ κ + 1, κ + 2, κ + 3,… ,3κ mod (3κ + 1)

 

  

4. Conclusion 

In this work, we focused on computing the domination number of the splitting graph of higher 

powers of cycle graphs. Through casewise analysis, we found exact values for κ = 2,3. Our 

computations reveal structural patterns, which led us to propose a conjecture for the general κth 

power. This study contributes to the theory of domination in transformed graphs and opens 

avenues for further research, including tighter bounds, algorithmic techniques, and generalizations 

to other graph families. 
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