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Abstract 

For a simple connected graph G, the distance d(ai, bi), where ai, bi ∈ V (G), is the length of 

the shortest path, measured by the number of edges, between vertices ai and bi. The n-order 

partition of vertices of G is denoted as ψ = {ψ1, ψ2, ψ3, . . . , ψn}. The notation of vertex ai ∈ 

G with respect to ψ is the vector code {d(ai, ψ1), d(ai, ψ2), . . . , d(ai, ψn)}. Partition set ψ is 

called a resolving partition set if the representation of each vertex with respect to ψ is 

unique. The partition dimension of G is defined as the minimum size of such a resolving 

partition set. In this research, we investigated the partition dimension of the generalized gear 

graph G(k, n) and the generalized fan graph F (2, n).. 

 

Key Words: Partition dimension, Metric dimension, Resolving set, Resolving partition set, 

Gear graph and Fan graph. 

Introduction 

In a simple connected graph G with a finite set of vertices V and edges E, the distance d(ai, 

U ) from a vertex ai ∈ V to a subset U ⊆ V is defined as the minimum distance min{d(ai, uj) 

| uj ∈ U }. For a subset U = {u1, u2, . . . , uk}, the representation r(ai | U ) of a vertex ai 

with respect to U is the ordered tuple (d(ai, u1), d(ai, u2), . . . , d(ai, uk)). A subset U is termed 

a resolving set of G if, for any distinct vertices ai, bi ∈ V , the representations r(ai | U ) ̸= 

r(bi | U ). The metric dimension of G is the cardinality of the smallest such resolving set. 

From 1975 onward, the notion of metric dimension and metric basis is described in 

academic sources under various names. Slater called it locating set in [1] and Harary et al. 

in 1976 called basis set [2]. The metric dimension of graphs has various uses in computer 

science and optimization. Chatrand et al. in 1998 extended this concept to partition 

dimension [3]. A partition of a set is a group of non-overlapping subsets whose union 

encompasses the entire set. The partition dimension pertains to partitioning the vertex set V 

of a graph G, emphasizing the graph’s resolvability, where vertices are uniquely identified 

by their distances to the subsets within the partition set. Let ψ = {ψ1, ψ2, ψ3, . . . , ψµ} be an 

µ − partition of V (G), the notation of vertex ai ∈ V in reference to ψ, is the vector code 

(d(ai, ψ1), d(ai, ψ2), d(ai, ψ3), . . . , d(ai, ψµ). If r(ai|ψ) ̸= r(bi|ψ) ∀ai, bi ∈ V (G) and ai ̸= bi 

then the partition set ψ is termed as resolving partition set of G and if their is no other 
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partition resolving set of G which has least order than ψ then the cardinality of ψ is called 

partition dimension. Chatrand et al. in 2000 found an important result that Pdim(G) ≤ 

dim(G) + 1 [4]. For further detail about metric dimension and partition dimension of 

graphs, we refer [5,6].In 2020, E. T. Baskoro and colleagues determined that graphs with 

order ξ ≥ 11 and diameter 2 possess a partition dimension of ξ − 3 [7]. In 2023, Shah and  

co-authors explored the parti- tion dimension of generalized convex polytopes [8]. The 

discovery of the fullerene molecule by Kroto et al. in 1985 sparked significant research 

interest in fullerene graphs [9]. In 1975, Garey and colleagues demonstrated that identifying 

a graph’s resolving set is an NP-hard problem [11]. Z. Hussain et al. in 2019 established 

upper bounds for the partition dimension of the M-wheel graph [12]. In 2020, M. Azeem 

and colleagues derived precise bounds for the partition dimension of convex poly- topes 

[13]. C. Grigorious et al. in 2017 and Maritz et al. in 2018 investigated the partition 

dimension of circulant graphs [14, 15]. G. Chappel and colleagues exam- ined the 

relationships among diameter, partition dimension, metric dimension, and other graph 

properties [17].In 2010, I. G. Yero and co-authors explored bounds on the partition 

dimension of Cartesian product graphs [18]. They proved that for any connected graphs A 

and B, the partition dimension of their Cartesian product satisfies Pd(A × B) ≤ Pd(A) + 

Pd(B) and Pd(A × B) ≤ Pd(A) + dim(B).  These  results clarify how partition and 

metric dimensions interact in product graphs, aiding applications in network design and 

graph algorithms. I. Javaid et al. in 2008 derived partition dimension of graphs related to 

wheels [19]. A. Khalil et al. in 2022, determined the partition dimension for specific classes 

of convex polytopes containing pendant edges and proved that its partition dimension is 

finite [20]. A. Nadeem et al. in 2022 calculate the Partition dimensions of notable convex 

polytope families. They gave bounds for different graph properties related to metric and 

partition dimensions and provided general examples of graphs with specific partition 

dimensions in [21]. 

H. Raza et al. in 2021, assessed the cardinalities of the generalized Petersen graph to 

determine the upper bound for its partition dimension [22]. M. A. Mohammed et al. in 

2021, examined the partition dimension of chain cycles formed by even and odd cycles [23]. 

Their research primarily focused on the partition dimension of the planar tessellation derived 

from boron nanosheets. Furthermore, they also considered a few induced subgraphs of these 

sheets to study their metric dimension. The applications of partition dimension in different fields 

like hierarchical data structures, robot navigation, network verification, network discovery, 

chemical compound representation, master mind game strategies, Djokovic–Winkler relation, 

image processing and identification of patterns. 

The partition dimension of Gear graphs and Fan graph has a broad range of applications in 

network design, optimization, and systems analysis. The partition di- mension of gear graphs 

assists in creating efficient routing algorithms and optimizing communication networks, error 

detection and correction in distributed systems, as well as recognizing communities in social 

networks. On the other hand, the fan graph finds applications in graph drawing and visualization 

by simplifying complex cyclic structures, circuit design by modeling feedback loops, network 

topology for resilient routing, and combinatorial optimization in problems like the traveling 

salesman prob- lem. Moreover, these graphs are useful in dynamic systems modeling, 

particularly for analyzing feedback processes in control systems and biological networks. These 

con- cepts provide powerful tools for understanding and optimizing various real world systems. 

The partition dimension of a gear graph, which features a central vertex linked to an even 

cycle with pendant vertices attached to alternating cycle nodes, is a key tool in optimization 
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across various domains. In network optimization, gear graphs model hub-and-spoke systems 

like telecommunications or transportation networks, where the central vertex acts as a core server 

or hub, the cycle represents regional nodes, and pendant vertices denote endpoints like user 

devices or delivery points; the partition dimension minimizes the number of landmark nodes 

needed for efficient routing, reducing latency and costs in systems like 5G networks or airline 

routes. In logistics, gear graphs represent supply chains with a central warehouse connected to 

cyclic regional hubs and local delivery points, where the partition dimension optimizes the 

selection of key distribution centers to cover all endpoints, cutting transportation costs for 

platforms like e-commerce. In social network analysis, gear graphs model a central influencer 

linked to a cyclic community with sub-groups, and the partition dimension identifies minimal 

influential nodes to maximize marketing reach, enhancing campaign efficiency. For error 

detection in sensor networks, the partition dimension selects minimal monitoring nodes to 

detect failures, improving reliability in systems like environmental monitoring. In 

combinatorial optimization, such as scheduling in distributed computing, it optimizes task 

assignments by pinpointing critical nodes, streamlining cloud computing operations. Despite 

challenges like computational com- plexity, future algorithmic improvements will enhance the 

partition dimensions utility in optimizing complex systems. For more applications of partition 

dimension of graphs, we refer [2, 5-8]. Since there are many graphs whose partition dimension is 

unknown therefore its applications are still limited. As a result, partition dimension is 

among the interesting problems to solve in graph theory. The following findings are helpful 

in calculating the partition dimension of our graphs. 

Theorem 0.1. [1] Let ϕ be a resolving partition set of V(G) , if 

d(vi, ki) = d(vj, ki) for all ki ∈ V (G) − {vi, vj}, then vi and vj must be in different 

classes of ϕ. 

Theorem 0.2. [8] For Sω a convex polytope graph with ω ≥ 6 then Pd(Sω) ≤ 4 . 

 

Theorem 0.3. [19] For a class of circulant graphs Gα(1, 3) if α ≡ 1(mod 6) and 

α ≥ 13 then Pdim(Gα) ≤ 4.  

 

Main Results Generalized  

Gear graph: 

The generalized gear graph G(k, n) is constructed by modifying a wheel graph where n 

additional vertices are inserted between each adjacent pair of cycle vertices. In a generalized gear 

graph G(k, n), the vertex of degree k is labeled by u0, called gear graph’s center. Neighbors of u0 

are labeled with u1, u2, ..., uk and n vertices inserted between every two neighboring vertices of the 

central vertex. 
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Figure 1: GENERALIZED GEAR GRAPH 

 

Theorem 0.4. Let Gk,n be a generalized gear graph then Pdim(Gk,n) ≤ 4 for n ≥ 3. 

Proof. Here we have two cases. 

Case-I: For odd vertices i.e n = 2α − 1, α = 2, 3, 4, ..., n, we partitioned the ver- tices 

into four partition resolving sets ω = {ω1, ω2, ω3, ω4} with ω1 = {u0, u1,µ}, 

ω2 = {u2,µ}, ω3 = {u3,µ} and ω4 = {u4,µ} where 0 ≤ µ ≤ n.To achieve the desired result, it is 

enough to demonstrate that each vertex in Gk,n has a distinct representation concerning ω. 

The representation of vertices will be of the following form 

r(u₁,μ | ω) = 

{
 

 
(0, μ + 2, μ + 2, μ + 1)  if  0 ≤ μ ≤ α − 1

(0,5 − μ + 2 ⌊
κ

2
⌋ , 6 − μ + 2 ⌊

κ

2
⌋ , μ + 1)   if μ = α

0,5 − μ + 2 ⌊
κ

2
⌋ , 6 − μ + 2 ⌊

κ

2
⌋ , 7 − μ + 2 ⌊

κ

2
⌋  if  α + 1 ≤ μ ≤ n

 

r(u₂,μ | ω) = 

{
 

 
(μ, 0, μ + 2, μ + 3)   if   0 ≤ μ ≤ α − 1

(μ, 0,5 − μ + 2 ⌊
κ

2
⌋ , 7 − μ + 2 ⌊

κ

2
⌋)    if   μ = α

(5 − μ + 2 ⌊
κ

2
⌋ , 0,5 − μ+ 2 ⌊

κ

2
⌋ , 7 − μ + 2 ⌊

κ

2
⌋)    if  α + 1 ≤ μ ≤ n

 

r(u₃,μ | ω) = 

{
 

 
(μ + 1, μ, 0, μ + 3)        if        0 ≤ μ ≤ α − 1

(μ + 1, μ, 0,5 − μ + 2 ⌊
κ

2
⌋)     if  μ = α

(5 − μ + 2 ⌊
κ

2
⌋ , 6 − μ + 2 ⌊

κ

2
⌋ , 0,5 − μ + 2 ⌊

κ

2
⌋)   if   α + 1 ≤ μ ≤ n
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r(u₄,μ | ω = 

{
 

 
(μ + 1, μ + 2, μ, 0)        if        0 ≤ μ ≤ α − 1

(4 − μ + 2 ⌊
κ

2
⌋ , μ + 2, μ, 0)     if  μ = α

(4 − μ + 2 ⌊
κ

2
⌋ , 6 − μ + 2 ⌊

κ

2
⌋ , 6 − μ + 2 ⌊

κ

2
⌋ , 0)   if   α + 1 ≤ μ ≤ n 

We can easily verify that all vertices have distinct representation with respect to resolving 

partition ω. It shows that When n is odd, we can divide all of the vertices into four 

partition resolving sets. 

 

Case-II: For even number of vertices n = 2α and 2 ≤ α ≤ n the representation of vertices of circle 

is of the form 

r(u₁,μ | ω) = 

{
 

 
(0, μ + 2, μ + 2, μ + 1)  if  0 ≤ μ ≤ α

(0, μ, 7 − μ + 2 ⌊
κ

2
⌋ , μ + 1)   if μ = α + 1

0,6 − μ + 2 ⌊
κ

2
⌋ , 7 − μ + 2 ⌊

κ

2
⌋ , 8 − μ + 2 ⌊

κ

2
⌋  if  α + 2 ≤ μ ≤ n

 

r(u₂,μ | ω) =  {
(μ, 0, μ + 2, μ + 3)   if   0 ≤ μ ≤ α

(6 − μ + 2 ⌊
κ

2
⌋ , 0,6 − μ + 2 ⌊

κ

2
⌋ , 8 − μ + 2 ⌊

κ

2
⌋)    if  α + 1 ≤ μ ≤ n

 

r(u₃,μ | ω) = 

{
 

 
(μ + 1, μ, 0, μ + 3)        if        0 ≤ μ ≤ α − 1

(α+ 1, μ, 0, 6 − μ + 2 ⌊
κ

2
⌋)     if  α ≤ μ ≤ α + 1

(6 − μ + 2 ⌊
κ

2
⌋ , 7 − μ + 2 ⌊

κ

2
⌋ , 0,6 − μ + 2 ⌊

κ

2
⌋)   if   α + 2 ≤ μ ≤ n

 

 

r(u₄,μ | ω = 

{
 

 
(μ + 1, μ + 2, μ, 0)        if        0 ≤ μ ≤ α − 1

(5 − μ + 2 ⌊
κ

2
⌋ , 7 − μ + 2 ⌊

κ

2
⌋ , μ, 0)     if  μ = α + 𝟏

(5 − μ + 2 ⌊
κ

2
⌋ , 7 − μ + 2 ⌊

κ

2
⌋ , 7 − μ + 2 ⌊

κ

2
⌋ , 0)   if   α + 2 ≤ μ ≤ n

 

We can check that each vertex has a unique representation with respect to the par- tition set ω. It 

demonstrates that When n is even, we can divide all of the vertices into four partition sets. In both 

cases, no two vertices have the same representation and hence Pdim ≤ 4. 
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1GENERALIZED FAN GRAPH: 

The fan graph F (2, n) is formed by taking the graph join of an empty graph K̄ n  with n 

vertices (no edges) and a path graph P2 with two vertices (one edge). The vertex set of F (2, n) 

consists of all vertices from K̄ n  and P2 combined, and its edge set includes the single edge of 

P2 plus all edges connecting each vertex of K̄ n  to both vertices of P2.. Clearly the total 

number of vertices of F (2, n) are n + 2 and total number edges are 2m + 1. 

 

Theorem 1.1. If F (2, n) is a Fan graph where n ≥ 2 then Pdim(F (2, n)) = n + 2. 

 

Proof. Let the partition set of F (2, n) be W = {w1, w2, w3, ..., wn} with w1 = 

{u1}, w2 = {u2}, w3 = {u3},..., wn = {un} then the notation of nodes of F (2, n) 

with respect to W will be of the form; 

 

 

(n−1) 

r(u1|W ) = (0, 1, 1, 1, ti.mes , 1) 

(n−2) 

r(u2|W ) = (1, 0, 1, 1, ti.m..es , 1) 

(n−3) 

r(u3|W ) = (1, 1, 0, 2, 2, 2, ti.m..es , 2) 

(n−4) 

r(u4|W ) = (1, 1, 2, 0, 2, 2, ti.m..es , 2) 

                                                                      .(n−4) 

r(un−1|W ) = (1, 1, 2, 2, 2, ti.m..es , 2, 0, 2) 

(n−3) 

r(un|W ) = (1, 1, 2, 2, 2, ti.m..es , 2, 0) 

 

it is noted that no two vertices have same representation so Pdim(F (2, n)) ≤ n + 2. Next we will 

show that Pdim(F (2, n)) ≥ n + 2 by providing that their is no resolving partition set W ′ such that |W 
′|≤ |W |. On the contrary let W ′ be a resolving partition of F (2, n) such that |W ′|≤ |W | then r(un−1|W 

) = r(un|W ) = (1, 1, 2, 0) which is a contradiction. This contradiction is due to our wrong 

supposition and hence we conclude that Pdim(F (2, n)) = n + 2. 
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Conclusion 

In this research paper, we conducted a comprehensive investigation into the partition dimension 

of two distinct classes of graphs: the generalized gear graph, denoted as G(k, n), and the fan 

graph, denoted as F (2, n). Our analysis reveals significant insights into the structural properties 

of these graphs. Specifically, we established that the partition dimension of the generalized gear 

graph G(k, n) is bounded above by 4, indicating a compact resolving partition for this graph 

family. In contrast, our findings demonstrate that the partition dimension of the fan graph F (2, n) 

is precisely n + 2, reflecting a linear dependency on the parameter n. These results contribute to a 

deeper understanding of the combinatorial properties and resolving capabilities of these graph 

structures, with potential implications for their applications in network design, graph theory, and 

related fields. 
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