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Abstract 

We consider equations of the form 

                                         
𝑑𝑧

𝑑𝑡
=  𝛼(𝑡)𝑧3 +  𝛽(𝑡)𝑧2                                           

Where α and β are polynomial functions of 𝑡 with a real dependent variable, but 𝑧 is complex such 

equations were considered by Lins Neto [7]. Our particular interest is the maximum number of periodic 

solutions which can bifurcate out of the origin following [1] and[3] , we consider different classes of 

equations  𝐶11,11 , 𝐶18,1 and 𝐶18,2 of the form (4) and we will calculate the maximum possible 

multiplicity of the origin using theorem [9]. We use Maple to calculate focal values of, 𝐶18,1 ,   

𝐶18,2    and  𝐶18,3 . 

Inauguration 

Preface    

In nature, many phenomena repeat after some time, such type of phenomena are mathematically 

defined as periodic solutions of system and generally we consider system consisting of differential 

equations. In 20th century investigation about periodic solution was a hot topic of research and take an 

important part to development of modern mathematics. In almost all fields of science, research on this 

topic has an impact for development of that field. On August 8, 1900, David Hilbert conveyed 23 

crucial mathematical issues at the Second International Congress of Mathematics [1].  Hilbert 

Problems gives further directions of Mathematics.  16th problem is most manipulated problem of   

algebraic geometry, differential equations and topology. 16th problem having two parts. In the first part 

we discuss relative position of algebraic curves in higher order vector field. In this part we find relation 

between different geometric properties of curves to understand the basic actions of complex systems. 

In second part, he discusses existence of possible number of limit cycle and it’s in higher dimensional 

polynomial vector fields their relative position. Limit cycles guide us to understand the behavior of 

dynamical systems. This problem has extensive impact to understand dynamical systems and ordinary 

differential equations. Tracking number of and location of limit cycles is essential in recognize the 

behavior of complex systems of population dynamics, chemical reactions, and electrical circuits. Limit 

cycle theory is told us about existence, uniqueness, and stability of limit cycles which helps us to 

recognize the behavior of nonlinear systems [2]. This theory also helps in development of physics, 

engineering, and biology. Hilbert’s 16th problem has had a profound impact on the development of 

mathematics and science. The problem has inspired generations of mathematicians and scientists, 

leading to significant advances in our understanding of complex systems. The active aera of research 

is about more deep knowledge of limit cycles and its properties. Finding limit cycles of differential 

equations is complicated. Henri Poincaré find and talk about limit cycle in his article first time having 
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4 parts “Integral Curves Described by Differential Equations” [6-9], published after 1880. Poincaré 

identify strong relation of the behaviours of limit cycles and solutions of differential equation problems 

related to structural of integral curves. After above research, Ivar Bendixson expand Poincaré’s work 

and this is known as Poincaré-Bendixson theorem [3], which tells in bounded area, limit set number 

of paths of dynamical systems. The triode vacuum tube in which self-produced oscillations are 

generated is invented as a result of limit cycle theory. Linear differential equations were found to 

explain such type of oscillation. In late 1920s, Van der Pol find a differential equation to explain 

oscillations for a triode vacuum tube of constant amplitude. [4]. In dynamical systems self-excited 

oscillations gives solutions. The Holing-Tanner predator-prey model [5], heart rhythms, temperature 

rhythms of body, hormone secretion, chemical reactions that are spontaneously oscillating, and 

vibrations in bridges and wings of airplane are examples of sustained oscillations even without 

presence of external effect’ 

Consider the differential equation of type 

𝑑z /𝑑ʈ = 𝑟0(ʈ) z³ +𝑟1 (ʈ) z² + 𝑟2 (ʈ) z + 𝑟3 (ʈ)….…                                                              (1.1.1) 

Is considered, ʐ is complex function depending on t, 𝑟𝑖’s are functions that are really valued. This form 

is same as equation given below: 

𝑑z/𝑑ʈ = 𝑞0 (ʈ)𝑧𝑛 +𝑞1 (ʈ)𝑧𝑛−1 +… + 𝑞𝑛 (ʈ)                                                                        (1.1.2) 

Problem  that is discussing  here is about obtaining  largest possible  limit cycles of  system that can 

bifurcate from  origin or we can say it as to find  the  periodic solutions that  generated from ʐ = 0 by 

using  perturbation of the coefficient of equation (1.1.1).Many phenomena are represented by system 

of differential equations ,where solution of system repeat with period of time. Most of research was 

on specific differential equations representing mechanics and electronics model ,but latest research is 

application to fields of  Biology ,demography and economics for this research new differential 

equations are introduced that are periodic and dependent of time ,so topic of interest is periodic solution 

of non-autonomous differential equation also finding maximum number of  periodic solution is most 

important topic of research. 

Some basic definition used in the study of limit cycles are 

Explanations: 

Autonomous equation 

A differential equation with right hand side having no independent variable 

                                                                    
 𝑑𝑠

𝑑ʈ
= ᶂ(𝑠)                                                                  (1.2.1) 

is called autonomous equation. 

 Non-autonomous equation 

A differential equation in which independent variable exists explicitly on right hand side of equation 

                                                     
𝑑𝑠

𝑑ʈ
= ᶂ(ʈ, 𝑠)                                                              (1.2.2) 

  is non-autonomous equation. 

Explicit function 

A function in which dependent variable can be written in the form of function of independent variable. 

𝑠 = ᶂ (ʈ)                                                                                                                            (1.2.3) 

Implicit function 

A function in which dependent variable is not equal to a function of   independent variable. 

ᶂ(𝑠, ʈ) = 0                                                                                                                      (1.2.4) 

Periodic solution 

 If 𝑠(ʈ) is any solution of   

                                                                           
𝑑𝑠

𝑑ʈ
= ᶂ(𝑠)                                                             (1.2.5) 

if  
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                                                               𝑠(ʈ + 𝑤) = ᶊ(ʈ)                                                      (1.2.6) 

 where w is lowest positive number. 

Critical point 

Q (𝑠0, ʈ0) is critical point of given below system 
𝑑𝑠

𝑑ʈ
= 𝑋(𝑠, ʈ) 

𝑑𝑠

𝑑ʈ
= ƴ(𝑠, ʈ) 

if 

𝑋 (𝑠0, ʈ0) = 0, 
and 

ƴ(𝑥0, 𝑦0) = 0. 
Center 

A center is a critical point where it is closed by many closed paths.  

Limit cycle 

From all periodic orbits of planar differential system, an isolated periodic orbit is called limit cycle.  

1.3   Polynomial system and Abel's equation 
Periodic solutions of equation (1.1.1) is our main concern. Consider the system 

                                                          
𝑑Ԟ

𝑑ʈ
=⋋ Ԟ + Ԣ + 𝛷Ɩ(Ԟ, Ԣ)                                               (1.3.1) 

                                                          
𝑑Ԣ

𝑑ʈ
= −Ԟ +⋋ Ԣ + 𝛹Ɩ(Ԟ, Ԣ) 

𝛷𝘯 and 𝛹𝘯  are  homogeneous polynomials of Ɩ. 

Consider transformation  

                                                           𝔍: (Ŗ, ƣ) ⟶ (ֆ, ƣ)                                                             (1.3.2) 
where 

                                                         ֆ = ŖƖ−1(1 − ŖƖ−1𝘨(ƣ))
−1

                                        (1.3.3) 

In an open set 𝔇 = {(Ŗ, ƣ), ŖƖ−1𝘨(ƣ) < 1} containing the origin, above function is defined. 

This transformation in polar coordinates system has been used for investigating periodic solutions  

                                                              
𝑑Ŗ

𝑑ʈ
=⋋ Ŗ + ŖƖ 𝔣(ƣ),

𝑑ƣ

𝑑ʈ
= 1 − Ŗ(Ɩ+1)(𝘨(ƣ))                     (1.3.4) 

 𝔣(ƣ), 𝘨(ƣ) are polynomials of degree ƣ + 1 in 𝑐𝑜𝑠ƣ and 𝑠𝑖𝑛ƣ. 

When  Ɩ = 2 the above discussed transformation was explained firstly by Lins Neto [11].  

From (1.3.3), we get 

                                                
𝑑ֆ

𝑑𝑡
= 𝛼(𝑡)ֆ3 + 𝛽tֆ2 −⋋ (Ɩ − 1)ֆ                                   (1.3.5) 

where 

𝛼(𝑡) = −(Ɩ − 1)𝘨(𝑡){𝔣(𝑡) +⋋ 𝘨(𝑡)}                        (1.3.6) 

𝛽(ƣ) = −(Ɩ − 1){𝔣(𝑡) + 2 ⋋ 𝘨(𝑡) + 𝘨(𝑡)} 
 From (1.3.6) , the transformation (1.3.3) can be written as 

                                                                        ŖƖ−1 =
ֆ

1 + ֆ𝘨(ƣ)
                                                       (1.3.7) 

Transformation maps from region Ŗ = 0 to ֆ = 0 𝑎𝑛𝑑 Ŗ > 0 to ֆ > 0 ,also from neighboring region 

of Ŗ = 0 to neighborhood of ֆ = 0, if  ֆ > 0  with  1 + ֆ𝘨(ƣ) > 0  ∀ 𝛩. It can be verify that the 

system given in (1.3.1),of constant solution ֆ = 0  related to equilibrium  point of (1.3.5) and also 

periodic solution of (1.3.5) having small positive ֆ  with low frequency limit cycles of (1.3.1) . 

Consider  
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                                               𝑑𝔁/𝑑ʈ = 𝐀(𝔁, 𝔂)                                                                                                               

                                              𝑑𝔂/𝑑ʈ = 𝐄 (𝔁, 𝔂) 

 𝐀 and 𝐄 are 𝐦th-degree polynomials. 

Let 𝜋(k,H) specify limit cycles oof above system. We clarify it as 

Ƕ𝑚 = 𝑠𝑢𝑝 {𝜋 (K, H): 𝑑𝑒𝑔𝑟𝑒𝑒 of 𝐀, 𝑑𝑒𝑔𝑟𝑒𝑒 of 𝐄 ≤ 𝐦}. In short now Hilbert’s problem converts to 

find a solution for Ƕ𝑚 in terms of 𝐦 and possible arrangement of limit cycles. 

After extreme efforts, we are not able to find Ƕ𝑚  for 𝐦 = 2 till now. Bautin in 1952 provide  Ƕ2 ≥ 

3. Ƕ2 = 3  is declared by Petroviskii , Shi and others gives examples of quadratic systems with 

minimum 4 limit cycles, gives  Ƕ2  ≥ 4.Ƕ3 = 5 when H and K are symmetric cubic polynomials 

[23].For cubic systems, up to eight limit cycles can bifurcate .N.G. Lloyd showed  Ƕ3  ≥ 11 , for 

certain Hamiltonian systems by using bifurcation of limit cycle [23-25] 

In 1923, Dulac claimed that polynomial systems donot limit cycles. But he cannot give its proof 

completely, new research tends to a proof of Dulac’s theorem. 

The system (1.2.1) can convert into a non-autonomous equation: 

𝑑ֆ/𝑑ƣ = 𝛼(𝑡)ֆ3 + 𝛽(𝑡)ֆ2 −⋋(𝐦-1) ƣ                                           (1.3.8) 

Transformation (1.6.1) facilitates the study of limit cycles in multidimensional system. 

Recent findings in the study of limit cycles have led to a deeper understanding of the complex behavior 

of polynomial systems. The use of sophisticated mathematical techniques, such as non-convergent 

power series and bifurcation theory, has enabled researchers to tackle previously unsolved problems. 

The transformation (1.6) maps the origin (Ŗ=0) to the origin (t = 0) and maps positive Ŗ-axis and 

positive ƣ- axis while preserving its shape and paths. It transforms the system into non autonomous 

equation 

Existence of limit cycle can be confirmed by Poincaré-Bendixson theorem with no equilibrium points 

of bounded region. Bifurcation techniques also ensure existence of limit cycles when we vary the 

coefficients of system. 

Formation of Periodic solutions  

Introduction 

This section commences with an exploration of a non-autonomous differential equation of first order 

of specific type 

                                                         
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2 + 𝛾(ʈ)                                             (2.1.1) 

 ʐ is complex and ʈ taken as real where Ձ, ϐ and 𝛾 are coefficients of real valued function. We fix the 

value 𝜔 ∈ 𝑅 to fulfil the periodicity requirements and investigate the resulting number of solutions 

with boundary condition. 

                                                ʐ(0) = ʐ(𝜔)                                                                            (2.1.2) 

Although the coefficients of the equation are periodic, the solutions may or may not exhibit periodic 

behavior. Our focus is on the scenario where  𝜔 = 1 and Ձ , ϐ are time-dependent polynomials. The 

equation (2.1.1) admits multiple periodic solutions, similar in nature to those of the real equation. 

                                    
ɗ₰

ɗ𝛩
= Ձ(𝛩)₰3 + ϐ(𝛩)₰2 − Հ(ը − 1)₰                                   

Our focus is on understanding the mechanisms governing the solution bifurcation, with the goal of 

establishing an upper bound for periodic creation and destruction. A solution is observed to undergo 

bifurcation, yielding up to 𝞵 periodic solutions, each possessing multiplicity 𝞵. The computational 

methodology for determining the origin ‘s multiplicity is described in [15]. 

Multiplicity analysis of origin 

The multiplicity of ʐ = 0 as solution of 

                                                           
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2 + 𝛾(ʈ)                                            (2.2.1) 
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Will be zero of given below displacement function. 

                                                          ɊǷ; Ƈ ⟶ 𝑧Ƿ(𝜔; 0, Ƈ) − Ƈ      

The function described above in an open neighboring region of origin is holomorphic. Now we 

originate the way to find the multiplicity of 𝑧 = 0 for 0 ≤ ʈ ≤ 𝟂 and Ƈ lies in neighboring of 0, now 

express ʐǷ(ʈ, 0, Ƈ) in power series. 

                                                          ʐǷin power𝑎ƞ(ʈ)Ƈƞ 

where 

                                                                 𝑎1(0) = 1 and 𝑎ƞ(0) = 0 if ƞ > 1 

Thus 

                                                                   ɊǷ; Ƈ ⟶ ʐǷ(𝑣; 0, Ƈ) − Ƈ     

                                                                     ʐǷ(ʈ, 0, Ƈ) = ∑∞
𝑛=1 𝑎ƞ(ʈ)Ƈƞ 

                                            ɊǷ(Ƈ) = (𝑎1(𝜔) − 1)Ƈ +  ∑∞
ƞ=1 𝑎ƞ(ʈ)Ƈƞ                                (2.2.2) 

  above equation inform us that the multiplicity of z = 0 is 𝜇 > 1 if 

𝑎1(𝑣) = 1, 𝑎2(𝑣) = 𝑎3(𝑣) = 𝑎4(𝑣) = 0 ∙∙∙∙∙∙= 𝑎 𝜇−1(𝑣) = 0 and  𝑎 𝜇(𝑣) ≠ 0 

Condition on Origin to become a center is 

𝑎1(𝜔) = 1 and 𝑎𝜅(𝜔) = 0 for all 𝜅 > 1 

To using above two equations, set of differential equations that are linear for 𝑎𝑛(ʈ) 𝑤𝑖𝑡ℎ  initial 

conditions are  𝑎1(𝑣) = 1 and, 𝑎𝜅(𝑣) = 0 , for 𝜅 > 1 

It is noted that 

𝑎̇1(ʈ) = ƌ1(ʈ)𝛾(ʈ) 
where 

𝑎1(ʈ) = 𝑒𝑥𝑝 (∫
𝜔

0

𝛾(𝜍)𝑑𝜍) 

Hence 𝜇 > 1 iff 

                                                      ∫
𝜔

0
𝛾(𝜍)𝑑𝜍  = 0                                                              (2.2.3) 

Our target in the situation when ʐ = 0 become a multiple alternative solution, suppose that (2.2.3) will 

be in this state into the transformation 

                                                                ₰ = ʐ 𝑒𝑥𝑝 [− ∫
𝜔

0
𝛾(𝜍)𝑑𝜍]                                                (2.2.4) 

                                                                  ₰̇̇ = Å(ʈ)₰3 + ß̂(ʈ)₰2                                                   (2.2.5) 

where 

Å(ʈ) = 𝛼(ʈ)𝑒𝑥𝑝 (2 ∫
1

0

𝛾(𝜍)𝑑𝜍) 

and 

β(ʈ) = ϐ(ʈ)𝑒𝑥𝑝 (∫
1

0

𝛾(𝜍)𝑑𝜍) 

The functions 𝛼, 𝛽 and 𝞬 that are given are periodic, then Å and 𝛽 in the above equation are also 

periodic. 

If multiplicity of 𝑧 = 0 is greater than 1 [15]. Then the multiplicity of ₰ = 0 is as a periodic solution 

of (2.2.5), when  𝛾(ʈ) = 0, we have an equation  

                                                            
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2                                                     (2.2.6) 

For the above equation, 𝑎1(ʈ) = 1 and, for ƞ > 1, the functions 𝑎ƞ(ʈ) are given below 

                                        𝑎̇ƞ = 𝛼 ∑ 𝑎𝑠𝑎𝑡𝑎𝑢𝑠+𝑡+𝑢=𝑚 + 𝛽 ∑ 𝑎𝑠𝑎𝑡𝑠+𝑡=𝑚                                            (2.2.7) 

                                                𝑠, 𝑡, 𝑢 ≥ 1                      𝑠, 𝑡 ≥ 1 
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Recursive solution led to computational complexity and tedious integration by parts as n increases. So, 

limit our focus to ƞ ≤ 10. 

Let 

ɳ1 = 𝑎1(𝜔) 

The focal values  ɳ𝑡
′ 𝑠 , 𝑡 = 1,2,3, . . . . ,8,9 …. Is defined as the multiplicity of 𝑧 = 0 that we express as 

𝜇 is k if  

ɳ1 = 1 and ɳ2 = ɳ3 =  … … … … = ɳ𝑘−1 = 0 but 𝜂𝑘 ≠ 0 

 ƌ𝑘(ʈ), 𝑘 ≤ 9 are generated by formulas given in literature and for k ≤ 10 is developed by Dr saima 

Akram. Now we describe some important formulas to calculate the focal values. 

Evaluation of 𝑎𝑗(ʈ), ɳ𝑗(ʈ) and perturbation methodology 

The theorem given below gives 𝑎𝑗(ʈ) and ɳ𝑗(ʈ) for 𝑗 ≤ 10 [15,21,2,26-28]. These functions are 

important to find highest multiplicity of solution. But these calculations are complicated and to avoid 

mistakes we use programming language maple to evaluate these periodic solutions To indicate an 

infinite integral that is a bar over a function 

𝑎(ʈ) =  ∫
𝜔

0

𝛼(𝜍)𝑑𝜍 

Theorem (2.3.1) 

For equation  

   
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2,  

 functions 𝑎2, 𝑎3, … … , 𝑎10 are given by the following formula. 

𝑎2 = 𝛽
_

 

𝑎3 = 𝛽−2 + 𝛼
−

 

𝑎4 = 𝛽 + 2𝛽
−

𝛼
−

+ 𝛽−𝛼
____

 

𝑎5 = 𝛽4
−

+ 3𝛽2 +
−

𝛽2
−__

+ 2𝛽
−

𝛽
−

𝛼 +
3

4
𝛼−2 

𝑎6 = 𝛽5
−

+ 4𝛽3
−

𝛼
−

+ 𝛽2𝛽𝛼
−

+ 2𝛽
−

𝛽2𝛼
−

+
9

2
𝛽
−

𝛼
−

+ 3𝛽
−

𝑎𝛼 −
1

2
𝛽

______

𝛼2
−

 

𝑎7 = 𝛽6
−

+ 5𝛽4
−

𝛼 + 𝛽4𝛼
−

+ 4ϐ3𝛽
−

𝛼

−

+ 2𝛽3
−

𝛼𝛽
−

+
17

2
𝛽2
−

𝛼2 +
−

3𝛽2
−

𝛼𝛼
−

+ (𝛽
−

𝛼)2 + 2𝛽2
−

𝛼
−

 

+8𝛽
−

𝛼𝛽
−

𝛼
−

𝛽𝛽𝛼
−

+
5

2
𝛼3 

𝑎8 = 𝛽7 +
−

6𝛽5𝛼
−

+ 𝛽5
−

𝛼

−

+ 𝛽
−

𝛽𝛼 + 2𝛽4
−

𝛼𝛽
−

+ 4𝛽3
−

𝛽2
−

𝛼 + 3𝛽3
−

𝛼𝛼
−

+ 3𝛽3
−

𝛼𝛽2
−

+ 3ϐ
−

𝛼3
−

𝛼
−

𝛼 

+
27

2
𝛽3
−

𝛼
−

−
3

2
𝛽2
−

𝛽𝛼−2 + 15𝛽2
−

𝛽
−

𝛼𝛼
−

+ 4ϐ2
−

𝛼
−

𝛼𝛽
−

+ 𝛽2
−

𝛼𝛽
=

𝛼 + 12𝛽2
−

𝛼𝛽
−

 

+8𝛽2
−

𝛼𝛽𝛼2
__

+ ϐ
−

(𝛽𝛼
−

)2 −
1

2
ϐ𝛼2

−

𝛼
−

+ 10𝛽
−

𝛼3
−

 

𝑎9 = 𝛽8 + 7𝛽6
−

𝛼
−

+ 6𝛽5𝛽
−

𝛼 + 2𝛽2𝛼
−

𝛽
−

+ 5𝛽𝛽2𝛼
−

+ 3𝛽4𝛼
−

𝛼 + 3𝛽3𝛼
−

𝛽2
−

+ 5𝛽4𝛼
−

−

𝛼 +
39

2
𝛽4
−

𝛼2
−

 

−2𝛽3
−

𝛽𝛼2 + 24𝛽3
−

𝛽
−

𝛼𝛼
−

+ 6𝛽3𝛼𝛼
−

−

𝛽 − 10𝛽3𝛼
−

𝛽𝛼
−

+ 12𝛽𝛼𝛽3𝛼
−

+ +4𝛽𝛼𝛽3𝛼 

+4ϐ
3

𝛽3𝛼
−

+
43

6
𝛼3
−

𝛽2
−

+ 4𝛽𝛽
−

𝛼3
−

+ 4𝛽2𝛼
−

+ 10𝛽𝛽
−

𝛼
−

𝛽2𝛼
−

+
15

2
𝛼−2𝛽2𝛼

−

 

+2𝛽2𝛽2𝛼
−

−

− 2𝛽4𝛼
−

−

+ 8𝛽3𝛼
−

𝛽
−

+ 2𝛽
−

𝛽2𝛼
−

𝛽
−

𝛼 + 26𝛽
−

𝛼𝛽2
−

𝛼𝛽
−

+ 6𝛽2𝛼𝛼𝛼
−

−
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−6𝛽2𝛼
−

𝛼𝛼
−

+ 12𝛽
−

𝛽
−

𝛼
−

𝛼 + 16𝛽2𝛼
−

𝛽𝛼
−

𝛽
−

− 16𝛽3𝛼𝛽
−

𝛼

−

+ 9𝛽2
−

(𝛽
−

𝛼)2 + 9(𝛽
−

𝛼)2 

−ϐ𝛼3
−

ϐ
−

+
35

8
𝛼4
−

− 6𝛼ϐϐ𝛼2
−

+ 6ϐ𝛼
−

ϐ𝛼2 + 6ϐ𝛼
−

ϐ𝛼2
−

+ 33𝛼2
−

ϐ
−

(ϐ
−

𝛼) − 24𝛼2
−

𝛽𝛽
−

 

+6𝛽2
−

𝛼
−

𝛼𝛼
−

− 4ϐ𝛼
−

𝛽𝛼2 
Theorem (2.3.2): 

 For 0z   as solution of equation 
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2                                                                             ( 2.3.2) 

has multiplicity b and2 ≤ 𝑏 ≤ 9iff 𝜂1 = 1,   2 ≤ 𝑖 ≤ 𝑏 − 1and 𝜂𝑏 ≠ 0 with 

𝜂2 = ∫

0
𝜔

𝛽 

𝜂3 = ∫

0
𝜔

𝛼 

𝜂4 = ∫

0
𝜔

𝛼𝛽2
−

 

𝜂6 = ∫

0
𝜔

(𝛼𝛽) 

𝜂7 = ∫

0
𝜔

(𝛼𝛽4
−

+ 2𝛼𝛼
−

𝛽2)
−

 

𝜂8 = ∫

0
𝜔

𝛼𝛽5
−

+ 3𝛼𝛼
−

𝛽3
−

+ 𝛽2𝛽𝛼
−

−
1

2
𝛼
−3

𝛽 

𝑎𝑛𝑑 

𝜂9 = ∫

0
𝜔

𝛼𝛽6
−

− 5𝛼𝛼4
−

− 2𝛽3
−

(𝛽𝛼
−

) + 20𝛽
−

𝛼
−

+ 2𝛼
−

𝛽𝛼2
−

 

𝜂10 = ∫
𝜔

0

(𝛼𝛽7 −
1235

6
𝛼𝛼𝛽̅5 −

970

3
𝛼𝛼2𝛽̅3 − 237𝛼𝛼2𝛽̅3 − 24𝛼𝛼2𝛽𝛽̅2 − 70𝛼𝛽̅3𝛼2 − 21𝛼4𝛽

− 74𝛼𝛼3𝛽̅ +
5

2
𝛼2𝛽𝛽̅4 + 32ϐ̅4𝛼ϐ𝛽̅̅̅̅ − 16𝛽𝛽̅4𝛼 − 15β5𝛼2 − 36ϐβ𝛼2𝛽𝛼̅̅̅ ̅̅ − 8𝛽𝛽4𝛼𝛼) 

For every perturbation selected sequence which is obtained after perturbation of coefficients gives us 

minimum one periodic solution bifurcated from origin. We consider an equation of type (2.2.1) where 

value of multiplicity is fixed. We consider a neighborhood Μ throughout complex plane having one 

periodic solution for ʐ = 0 . Then result (2.4) in [13] tells us all possible number of periodic solutions 

are fixed after some minor change in coefficients where initial points are in M. We disturb coefficients, 

if necessary, then all  

  Ϧ2 =   Ϧ3 =  … … … … =   Ϧ𝜐−1 = 0 but   Ϧ𝑣 ≠ 0 

Hence, we get a suggested periodic solution Ψ, that is non-trivial, it means we obtain same fixed no of 

periodic solutions after perturbation. Already known complicated solutions appear in coupled 

combination which ensure that 𝛹 is real. Then Ŵ1 be an adjacency of 𝜓 and 𝛭1 be an adjacency of 

ʐ = 0 with condition 

                                                                 𝛭1 ∪ 𝛢1 ⊂  Μ and  𝛭1 ∩ 𝛢1 = ∅ 

Initial points with each of 𝑀1and 𝐴1 save number of periodic solutions under restricted perturbation 

of coefficients. We then again disturb the coefficients to get Ϧ2 =   Ϧ3 =  … … … … =   Ϧ𝜐−2 = 0 but   

Ϧ𝑣−1 ≠ 0. In such situation multiplicity is υ-1. Now we attain second non-trivial real periodic solution, 

an initial point will be in 𝑀1, while an initial point in 𝛢1 ensure a real periodic solution exist. Therefore, 
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multiplicity of zero solution is υ-2 and we attain 2 non-trivial periodic solution that are real. Following 

this concept and repeating these steps again and again, we get an equation of multiplicity υ-2, all 

solutions are distinct, nontrivial solutions and real. 

Criteria for a center 

To attain maximum multiplicity for different groups of coefficients of equation, we investigate the  

Ϧ𝑣 = 𝑎𝜐(𝜔) given in described above theorem until we attain a value v having property  

 Ϧ𝑣 ≠ 0 for all if  Ϧ2 =  Ϧ3 =  … … … … =  Ϧ𝑣−1 = 0 then և𝑚𝑎𝑥 is maximum value of v. 

We can compute   Ϧ𝑣 by above discussed method when ʐ = 0 is a center. Then we stop to find 

more  Ϧ𝑣 .Results for ʐ = 0 to be a centre, which are defined in [15], are repeated here because we  

need these statements to find  և𝑚𝑎𝑥. 

Theorem 

Let function Ɣ which is differentiable with Ɣ(𝜔) = Ɣ(0) , continuous and defined on 𝐼 = Ɣ([0, 𝜔]) 

that is                                                      𝛼(ʈ) = ᶂ(Ɣ(ʈ))Ɣ̇, 

                                                                         𝛽(ʈ) = ᶃ(Ɣ(ʈ))Ɣ̇.                                                       
Then origin 𝑧 = 0 is center of equation (2.3.2)          

Corollary 

Consider equation (2.3.2) where 𝛼(ʈ) is a constant multiple of 𝛽(ʈ) and ∫ 𝛽(ʈ)
𝜔

0
𝑑ʈ = 0 

implies origin is a center. 

Corollary 

Let 𝛼(ʈ) and 𝛽(ʈ) is identically zero and other has mean value zero. Then origin is a center as discussed 

in [16,17]. 

Corollary 

Let 𝛼(ʈ)and 𝛽(ʈ) ℎ𝑎𝑣𝑖𝑛𝑔 odd powers of 𝑠𝑖𝑛(ʈ) or cos (ʈ),then origin is a center. 

Summary of previous results 

Here an equation of form 

                                                                    
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2                                                  (2.5.1) 

Above equations were initially used by Lins Neto in [13] where equation achive number of periodic 

solutions. He explained it with examples of coefficient ϐ(ʈ)  with degree one and Ձ(ʈ) has degree 𝑑1,  
𝑑1

2
+ 3 periodic solutions exist.  Alwash and Lloyd in [19] used polynomial in ʈ or coefficients of 

function in 𝑐𝑜𝑠(ʈ) and 𝑠𝑖𝑛(ʈ) and explained the number of periodic solutions with examples that 

minimize the limitations given by Lins Neto [13]. Alwash consider class Ҫ2,3 ,verify the result here. 

Theorem 

consider Ҫ2,3  of  equation 

                                                                          
𝑑𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2                                                      

 𝛼(ʈ), 𝛽(ʈ) are of degree two and three respectively. 

                                                            𝛼(ʈ) = 𝑤 + 𝑥𝑡 + 𝑦𝑡2 

                                                           𝛽(ʈ) = 𝑟 + 𝑠ʈ + 𝑢ʈ2 + 𝑣𝑡3 

attain 𝜇𝑚𝑎𝑥 Ҫ2,3 = 8. 

The class Ҫ𝑙,1 , l =1,2,3,..,6 ,Ձ(ʈ) and ϐ(ʈ) has degree l and 01respectively is explored by Alwash and 

Lloyd in [15-17]. If 𝑛𝑙  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝜇𝑚𝑎𝑥(𝐶𝑙,1) then 𝑛1 = 3, 𝑛2 = 4, 𝑛3 = 4, 𝑛4 = 5 𝑛5 = 5 and 𝑛6 ≥
7 are results explored by them In [15-17] .Alwash  gives Ӈ𝑙  class of  equations of type (2.3.2) with Ձ(ʈ) 

and ϐ(ʈ) homogeneous polynomials in 𝑐𝑜𝑠(ʈ) and 𝑠𝑖𝑛(ʈ)of degree 2Ɩ and Ɩ respectively. Hilbert 

number is calculated for these classes. Then they have result, if 𝜇𝑚𝑎𝑥(Ӈ𝑙) = 𝑓𝑙. Then 𝑓1 = 5, 𝑓2 = 5 

and 𝑓3 ≥ 7.N. Yasmin in [20,21] let the classes 𝐶1,𝑙, 𝑙 = 1,2,3,4,5 with Ձ(ʈ) and ϐ(ʈ) of degree 1 and 



65 
 

______________________________________________________________________________________________________________________ 
Volume 3, No. 2                                            April – June, 2025 

l respectively. Then she conclude that, if  𝑛𝑙 = 𝜇𝑚𝑎𝑥(𝐶1,𝑙) then 𝑛1 = 3, 𝑛2 = 𝑛3 = 4, 𝑛4 = 𝑛5 = 8. S. 

Akram derive formula for maximum multiplicity 10 , also she verify and modify previous results by 

using  new developed formula [26-29]. A short overview of results of different classes obtained till 

now are given in the following table. Most of results are improved by Dr S. Akram. 

 

𝛼/𝛽 1 2 3 4 5   6 7 8 9 10 11 12 14 

1 /2/ /3/ /4/ /5/ /6/ (< 7

<) 

  ‘’10’’  *8*  ,10, 

2 4* “4” 8 (((8))

) 

{8} (< 8

<) 

  ‘’10’’  *7*  ,8, 

3 4* “8” (((5)

)) 

‘’8’’ (<

8 <) 

 ‘’10’’ ‘’8’’ ‘’10’’ \7\ *7* {8} ,8, 

4 5* 7  {8} *7    ‘’8’’ :8: \7\ ;8;   

5 5* {7}     ‘’8’’ ‘’8’’ :8: ‘’9’’ ;8;   

6 7*       ‘’8’’ :7:  ;8; ‘’8’’  

7   {10} {10} {8} {8} ‘’8’’ ‘’8’’      

8   ‘’8’’  {8} {8} {8}       

9 ‖|10|‖  |||10

||| 

|‖7‖|           

10   {10} {10} {8}         

12      {8}        

 

Amar result given in (*..*), Zahid Saleem results given in ( ,..,),M.Irfan results given in (;..;), M.Iftikhar 

Hussain results given in(\..\), Arooj result given in(:..:),Entriwithin (..(..*)  express results obtained by 

Alwash. Results given in (/../) are used of N.Yasmin in [20-21]. Results with bar are given by 

M.Ashraf. Results with in ((( ))) are deduced by Jamil Ahmad. Results in (*.. ) are calculated by Gul 

Hassan. Numbers given within (“”)  show results given by Dr Saima Akram and Allah Nawaz. Results 

given in (< <) are of Azra Aziz and entries with ( ||| |‖ )resultt found by M.Irfan. My work is on classes 

Ҫ18,1 > 10, Ҫ18,2 > 8, Ҫ18,3 > 10. 

Bifurcating periodic solutions  

Initiation 

Assume                                                                     
ɗ𝑧

ɗʈ
= Ձ(ʈ)𝑧3 + ϐ(ʈ)𝑧2                                               (3.1.1) 

with 𝛼 and 𝛽 both polynomial functions depending on ʈ and z is complex, above equation considered 

by Lins Neto [13], in which  pugh’s question is discussed. We concern with number of periodic 



66 
 

______________________________________________________________________________________________________________________ 
Volume 3, No. 2                                            April – June, 2025 

solutions bifurcated from origin [15], now our concern is about equation (3.1.1) to investigate the 

optimum multiplicity with same origins related to theorem (2.3.2). These focal values attain by Maple. 

Maple to compute focal values 

To calculate periodic solutions of equation 

                                                             
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2                                               (3.2.1)         

Focal values ɳƥ are already discussed with 𝛼(ʈ) and 𝛽(ʈ) 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 higher than 2 which cannot be 

estimated by hand calculations. Maple can help us in evaluation of focal values. With the help of Maple 

commands polynomials can be integrated, expanded and factorized have explained key commands for 

computing focal values.  we locate ɳ2 for equation(3.2.1). 
𝛼(ʈ) = 𝑎𝑟 + 𝑏𝑟ʈ + 𝑐𝑟ʈ2 + 𝑑𝑟ʈ2 + 𝑒𝑟ʈ4 + 𝑓𝑟ʈ5 + 𝑔𝑟ʈ6 + ℎ𝑟ʈ7 + 𝑖𝑟ʈ8 

                            𝛽(ʈ) = 𝑘𝑝 + 𝑙𝑝ʈ+𝑚𝑝ʈ2 

In maple we write it as 

               Alpha:= 𝑎𝑝+𝑏𝑝.ʈ+𝑐𝑝.ʈ^2+𝑑𝑝.ʈ^3+𝑒𝑝.ʈ^4+𝑓𝑝.ʈ^5+𝑔𝑝.ʈ^6+ℎ𝑝.ʈ^7+𝑖𝑝.ʈ^8; 

                 Beta:= 𝑘𝑝+𝑙𝑝.ʈ+𝑚𝑝.ʈ^2; 

Formula for  ɳ2   is 

                    ɳ2 = ∫ 𝛽
1

0
(ʈ) 𝑑ʈ. 

We calculate integral in maple. 

Maple integration 
The "int" function is performed with respect to a variable to estimate the definite or indefinite integral 

of polynomial. For indefinite integration, there is a name in second argument ʈ. If form of second 

argument is  ʈ =  𝑥0. . 𝑦0 where 𝑥0 𝑎𝑛𝑑 𝑦0 are initial and final points of interval of integration. In this 

topic some time we use 𝑎𝑟 and sometimes 𝑎𝑝 both have same meanings. We write 𝜂2 in Maple as 

                             𝑒𝑡𝑎2 ≔ 𝑖𝑛𝑡(𝑏𝑒𝑡𝑎, ʈ = 0. .1); 
then we get 

                              ɳ2 = 𝑘𝑝+𝑙𝑝/ 2+𝑚𝑝/ 3 

To evaluate  ɳ3 = ∫ 𝛼
1

0
(ʈ)𝑑ʈ .We write it in Maple. 

                             𝑒𝑡𝑎3 ≔ 𝑖𝑛𝑡(𝑎𝑙𝑝ℎ𝑎, ʈ = 0. .1); 

And obtain 

ɳ3 =  𝑎𝑟 +
𝑏𝑟

2
+

𝑐𝑟

3
+

𝑑𝑟

4
+

𝑒𝑟

5
+

𝑓𝑟

6
+

𝑔𝑟

7
+

ℎ𝑟

8
+

𝑖𝑟

9
 

 theorem(2.3.2) inform us 

                                    ɳ4 = ∫ 𝛼
1

0
(ʈ). 𝛽̅(ʈ)𝑑ʈ. 

where 

                                       𝛽̅(ʈ) = ∫ 𝛽(ʈ)𝑑ʈ. 
similarly 𝑏𝑒𝑡𝑎1 = 𝑏𝑒𝑡𝑎𝑏𝑎𝑟 = 𝑖𝑛𝑡(𝑏𝑒𝑡𝑎, 𝑡)  

So 𝛽1 =  𝑘𝑝ʈ + 𝑙𝑝ʈ2/2 + 𝑚𝑝ʈ3/3 

For attaining ɳ4 we calculate value α(ʈ)𝛽̅(ʈ). 

Extend an expression in Maple. 

Expansion program is to give out products of polynomial. Performed as 

                              𝑔𝑒𝑚𝑚𝑎 ≔ α(ʈ)𝛽̅(ʈ); 

then  

                           𝑔𝑒𝑚𝑚𝑎 ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝑎𝑙𝑝ℎ𝑎 ∗ 𝑏𝑒𝑡𝑎1); 

𝑔𝑒𝑚𝑚𝑎 ≔ (𝑎𝑟 + 𝑏𝑟ʈ + 𝑐𝑟ʈ2 + 𝑑𝑟ʈ2 + 𝑒𝑟ʈ4 + 𝑓𝑟ʈ5 + 𝑔𝑟ʈ6 + ℎ𝑟ʈ7 + 𝑖𝑟ʈ8)(𝑘𝑝ʈ + 𝑙𝑝ʈ2/2 + 𝑚𝑝ʈ3/3) 

 𝑔𝑒𝑚𝑚𝑎4 is calculating using syntax for 𝜂2  and 𝜂3   
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𝑔𝑒𝑚𝑚𝑎4 ≔
2

35
𝑚𝑝𝑙𝑝 +

1

15
𝑖𝑝𝑙𝑝 +

1

17
𝑚𝑝𝑘𝑝 +

1

13
ℎ𝑝𝑙𝑝 +

1

19
𝑖𝑝𝑘𝑝 +

1

18
𝑔𝑝𝑙𝑝 +

1

7
ℎ𝑝𝑘𝑝 +

1

12
𝑙𝑝𝑓𝑝

+
1

6
𝑔𝑝𝑘𝑝 +

1

13
𝑘𝑝𝑙𝑝 +

1

9
𝑓𝑝𝑘𝑝 +

1

11
𝑑𝑝𝑙𝑝 +

1

5
𝑒𝑝𝑘𝑝 +

1

8
𝑙𝑝𝑐𝑝 +

1

6
𝑘𝑝𝑑𝑝 +

1

7
𝑏𝑝𝑙𝑝

+
1

5
𝑐𝑝𝑘𝑝 +

1

7
𝑎𝑝𝑙𝑝 +

1

2
𝑏𝑝𝑘𝑝 +

1

3
𝑎𝑝𝑘𝑝. 

To attain multiplicity greater than 3 , put 𝜂2 = 𝜂3 = 0  

We get values of 𝑎𝑝 𝑎𝑛𝑑 𝑘𝑝 after putting  𝜂2 = 0 and 𝜂3 = 0  

                                𝑎𝑝 = −
𝑏𝑝

2
−

𝑐𝑝

3
−

𝑑𝑝

4
−

𝑒𝑝

5
−

𝑓𝑝

6
−

𝑔𝑝

7
−

ℎ𝑝

8
−

𝑖𝑝

9
 

and 

                                𝑘𝑝 = −𝑙𝑝/ 2-𝑚𝑝/ 3 

 In Maple, substitution command is used to putting above values in 𝜂4 . 

Substitution of Value in Expression. 

We follow format syntax when substitute value of coefficient to change some another value. 

𝑒𝑡𝑎4 ≔ 𝑒𝑥𝑝𝑎𝑛𝑑(𝑠𝑢𝑏𝑠 {𝑎𝑝 = −
𝑏𝑝

2
−

𝑐𝑝

3
−

𝑑𝑝

4
−

𝑒𝑝

5
−

𝑓𝑝

6
−

𝑔𝑝

7
−

ℎ𝑝

8
−

𝑖𝑝

9
, 𝑘𝑝 = −

𝑙𝑝

2
−

𝑚𝑝

3
} , {𝑔𝑒𝑚𝑚𝑎4}));  

 We obtain 𝜂4  

        𝜂4: = {
1

120
𝑚𝑝𝑙𝑝 +

7

1375
ℎ𝑝𝑙𝑝 +

5

1470
𝑔𝑝𝑙𝑝 +

7

1628
𝑓𝑝𝑙𝑝 +

5

1658
𝑒𝑝𝑙𝑝 +

1

230
𝑑𝑝𝑙𝑝 +  

1

210
𝑐𝑝𝑙𝑝 +

1

310
𝑖𝑝𝑙𝑝}.            

We can factorize an expression in maple. 

Factorization in Maple. 
We factorize multi-variable polynomial of algebraic number coefficients.  

 "factor" function is used for this purpose. 

Suppose 𝑒𝑡𝑎 41 ≔
1

120
∗ 𝑚𝑝 ∗ 𝑙𝑝 +

7

1375
∗ 𝑚𝑝 ∗ ℎ𝑝 ∗ 𝑙𝑝 +

5

1470
∗ 𝑚𝑝 ∗ 𝑔𝑝 ∗ 𝑙𝑝 +

7

1628
∗ 𝑚𝑝 ∗ 𝑓𝑝 ∗ 𝑙𝑝; 

The factorization of eta 41 is 

               𝑒𝑡𝑎41 ≔ 𝑓𝑎𝑐𝑡𝑜𝑟(𝑒𝑡𝑎41); 

It gives  

                 𝜂4 = 𝑚𝑝𝑙𝑝 (
1

120
+

7

1375
ℎ𝑝 +

5

1470
𝑔𝑝 +

7

1628
𝑓𝑝).All above discussed commands help us to 

find focal values. 

Periodic solution of class 𝐶18,1 

Consider 𝐶18,1 ,equation of form   

                                            
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2 

 𝛼(ʈ) has degree 18,𝛽(ʈ) has degree 1 respectively that is 

 𝛼(ʈ) = 𝑐 + 𝑑ʈ + 𝑒ʈ2 + 𝑓ʈ3 + 𝑔ʈ4 + ℎʈ5 + 𝑖ʈ6 + 𝑗ʈ7 + 𝑘ʈ8 + 𝑙ʈ9 + 𝑚ʈ10 + 𝑛ʈ11 + 𝑜ʈ12 + 𝑝ʈ13 +
𝑞ʈ14 + 𝑟ʈ15 + 𝑠ʈ16 + 𝑢ʈ17 + 𝑣ʈ18 
and 

                                         𝛽(ʈ) = 𝑎 + 𝑏ʈ  
Then by previous theorem 

 𝜂2 = 𝑎 +
b

2
 

also 

  𝜂3 = 𝑐 +
𝑑

2
+

𝑒

3
+

𝑓

4
+

𝑔

5
+

ℎ

6
+

𝑖

7
+

𝑗

8
+

𝑘

9
+

𝑙

10
+

𝑚

11
+

𝑛

12
+

0

13
+

𝑝

14
+

𝑞

15
+

𝑟

16
+

𝑠

17
+

𝑢

18
+

𝑣

19
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Origin multiplicity is 𝜇 = 2 if 𝜂2 is not equal to zero and 𝜇 = 3 if we have 𝜂2 = 0 and 𝜂3 ≠ 0, for 

origin multiplicity higher then 3 consider 𝜂2 = 0 = 𝜂3 implies  

         𝑎 = −
𝑏

2
                                                                                        (3.3.1) 

𝑐 = −(
𝑑

2
+

𝑒

3
+

𝑓

4
+

𝑔

5
+

ℎ

6
+

𝑖

7
+

𝑗

8
+

𝑘

9
+

𝑙

10
+

𝑚

11
+

𝑛

12
+

0

13
+

𝑝

14
+

𝑞

15
+

𝑟

16
+

𝑠

17
+

𝑢

18
+

𝑣

19
)                        

(3.3.2) 
Now  

𝛼(ʈ) = −(
𝑑

2
+

𝑒

3
+

𝑓

4
+

𝑔

5
+

ℎ

6
+

𝑖

7
+

𝑗

8
+

𝑘

9
+

𝑙

10
+

𝑚

11
+

𝑛

12
+

0

13
+

𝑝

14
+

𝑞

15
+

𝑟

16
+

𝑠

17
+

𝑢

18
+

𝑣

19
) + 𝑑ʈ +

𝑒ʈ2 + 𝑓ʈ3 + 𝑔ʈ4 + ℎʈ5 + 𝑖ʈ6 + 𝑗ʈ7 + 𝑘ʈ8 + 𝑙ʈ9 + 𝑚ʈ10 + 𝑛ʈ11 + 𝑜ʈ12 + 𝑝ʈ13 + 𝑞ʈ14 + 𝑟ʈ15 + 𝑠ʈ16 +
𝑢ʈ17 + 𝑣ʈ18                                (3.3.3) 

  𝛽(ʈ) = 𝑎 + 𝑏ʈ                                                                                                      (3.3.4)  

                 𝜂4 =
1

2793510720
{𝑏(7759752𝑒 + 11639628𝑓 + 13302432𝑔 + 13856700ℎ +

13579566𝑗 + 13168064𝑘 + 12697776𝑙 + 12209400𝑚 + 11724900𝑛 + 11255904𝑜 +
10808226𝑝 + 10384374𝑞 + 9984975𝑟 + 9609600𝑠 + 9257248𝑢 + 8926632𝑣)} 

As for  𝜂4 = 0 ,b= 0 or {𝑒 =
1

759752
{11639628𝑓 + 13302432𝑔 + 13856700ℎ + 13579566𝑗 +

13168064𝑘 + 12697776𝑙 + 12209400𝑚 + 11724900𝑛 + 11255904𝑜 + 10808226𝑝 +

10384374𝑞 + 9984975𝑟 + 9609600𝑠 + 9257248𝑢 + 8926632𝑣} 

As b is not equal to zero,if we chose b=0 then 𝛽(ʈ) becomes equal to zero and in this case center 

becomes origin so we chose {𝑒 =
1

759752
{11639628𝑓 + 13302432𝑔 + 13856700ℎ +

13579566𝑗 + 13168064𝑘 + 12697776𝑙 + 12209400𝑚 + 11724900𝑛 + 11255904𝑜 +

10808226𝑝 + 10384374𝑞 + 9984975𝑟 + 9609600𝑠 + 9257248𝑢 + 8926632𝑣} 

And after multiple steps done in maple we evaluate eta5 by using formula discussed earlier  

 𝜂5=-

1/642507465600(𝑏2)(254963280e+382444920f+433437576g+446185740h+440391120i+42590457

0j+407703520k+388328688l+369072720m+350574510n+333125100o+316829370p+301693392q+

287672385r+274697280s+262689440u+251568720v) 

Expression become complicated and further calculation to find focal values are not possible. For 

simplicity choose some coefficients zero.         

Theorem 

Consider class 𝐶18,1  of  type 

  
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2 

with 𝛼(ʈ), 𝛽(ʈ) of degree 18 and 1 respectively. 

𝛼(ʈ) = 𝘢 + 𝘥ʈ3 + 𝘣ʈ + 𝑒ʈ4 + 𝑓ʈ5 + 𝒔ʈ𝟏𝟖 
and  

                                                        𝛽(ʈ) = 𝑢 + 𝑦ʈ 
Then 𝜇𝑚𝑎𝑥 𝐶18,1 ≥ 10. 
Proof 

We are interested to compute  Ϧ𝑝  , 𝑝 = 2,3, . . ,10 for multiplicity of origin. For above coefficients 

we’ll  obtain 

                                          Ϧ2 = 𝑢 +
𝑦

2
  

                                            Ϧ3 = 𝘢 +
𝘣

2
+

𝑑

4
+

𝑒

5
+

𝑓

6
 + 

𝑠

19
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 by using previous discussed results we can say that multiplicity of the origin 𝑧 = 0 is 2 if Ϧ2 ≠ 0 and 

𝜇 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜3 if Ϧ2 = 0  𝑎𝑛𝑑 Ϧ3 ≠ 0.For attaining multiplicity of  order more than 3, take Ϧ2 =
Ϧ3 = 0 then 

                                               𝑢 =  −
𝑦

4
                                                                                    (3.3.1) 

                                           𝑎 = −
𝘣

2
−

𝑑

4
−

𝑒

5
−

𝑓

6
 - 

𝑠

19
                                                                          (3.3.2) 

 

Above two equations are utilized to get new form of coefficients 𝛼(ʈ) 𝑎𝑛𝑑  𝛽(ʈ)  to measure 𝜂4 

.Therefore  

                𝛼(ʈ) = −
𝘣

2
−

𝑑

4
−

𝑒

5
−

𝑓

6
 - 

𝑠

19
+ 𝘥ʈ3 + 𝘣ʈ + 𝑒ʈ4 + 𝑓ʈ5 + 𝒔ʈ𝟏𝟖                                           (3.3.3) 

                   𝛽(ʈ) = −
𝑦

2
+

𝑦

2
ʈ                                                                                                 (3.3.4)  

                   Ϧ4 =
1

95760
𝑦(306𝑠 + 475𝑓 + 456𝑒 + 399𝘥) 

Now as we are interested in higher multiplicity, so we put Ϧ4 = 0 i.e. 

                            𝑦(306𝑠 + 475𝑓 + 456𝑒 + 399𝘥) = 0 

Implies that either 𝑦 = 0 

or                𝖽 = (−
306

399
𝑠 −

475

399
𝑓 −

456

399
𝑒)                                                                  (3.3.5) 

 

If we choose 𝑦 = 0 then we get  ϐ(ʈ) = 0 and also  Ϧ2 = 0 then corollary(2.4.3) gives average values 

of alpha zero and origin become center, So we consider 𝑦 ≠ 0. Thus we have other possibility  

         𝖽 = (−
306

399
𝑠 −

475

399
𝑓 −

456

399
𝑒)                                                                                                   

Thus 𝛼(ʈ) and 𝛽(ʈ) becomes            

𝛽(ʈ) = −
𝑦

4
+

𝑦

4
ʈ                                  

and   Ϧ5 = 𝑦2(
110160𝑠+24035 𝑓+9614𝑒

1695909600
)  

If we want  Ϧ5 = 0. 
Then value of f will be    

   𝑓 = −
110160

24035
𝑠 −

9614

24035
𝑒                                                                           (3.3.6)                                                                               

as 𝑦 ≠ 0 (proved). 

To measure 𝜂6 use above value and we get                        

     Ϧ6 =
17𝑠𝑦(329015115𝑦2±586753470𝑠+26025098𝑒)

7494235424676000
 

Furthermore if we assume  Ϧ6 = 0,it is possible only when 

either 𝑦 = 0 or 

𝑠 =
329015115𝑦2+26025098𝑒

586753470
                                                                                                        (3.3.7) 

Since we assumed 𝑦 ≠ 0 (proved)   and we choose value of                 

𝑠 =
329015115𝑦2+26025098𝑒

586753470
                     

We utilize (3.5.13) to measure Ϧ7  

 𝛽(ʈ) = −
𝑦

4
+

𝑦

4
ʈ                                   

      

     Ϧ7 =  
17 𝑦2(68445𝑦2+5414 𝑒)(32804491597665𝑦2+35417943045810𝘣+2271836331643601𝑒)

7395294608016249114180000`
 

    

If we assume Ϧ7 = 0 have possibility either 𝑦 = 0 gives us origin become center ,so we choose 𝑦 ≠
0,and put  
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e =  
      329015115

5414
𝑦2 so 

 Ϧ8=-
1

469673246958329696516885623452842072800000
(𝑦(68445𝑦2 +

5414𝑒)(862262734656893672418367739933476895𝑦4 +
136734119471152088471055605960957398𝑦2e+5438806815768388830818359𝑒2) 

 Ϧ9 =
−1

8431073602108505187840
𝑦5(14070900605901087𝑦 + 1104386347794387280) 

 

 Ϧ10=
−1936999299478882439386469621301498000907446551992778251463896038960388829158240028651524039957742244518028682179512850095910706

270712938877709517533878510555954978046704256804867599527366167601986060695571625491436430767820328883064196511105555322315227882252778863534215861969315635054199
 

Thus 𝜇𝑚𝑎𝑥(𝐶18,1) = 10 if all above eq 

Theorem  

Consider the equation of the type 

                                           
ɗʐ

ɗʈ
= Ձ(ʈ)ʐ3 + ϐ(ʈ)ʐ2                                                                    (3.3.8) 

where 

 𝛼(ʈ) = (
212050812612270013440

42330274406680
−

1

2
𝜀1 −

205

678
𝜀2 −

947

57632
𝜀3) + (

639071545728297408

88561545625
− (

223

125
+ 𝜀4)

2

) ʈ +

(
164219479054969790021

1794690397955140625
−

1829

95936
𝜀3 + (

651825

72156
+ 𝜀5)

2

) ʈ3 + (−
508874480008576

518569854079055625
+

1110400

482969
𝜀3 +

(
1700981

30869
+ 𝜀6)

2

) ʈ4 + (
25857193916770150909

57095876105491275
−

207

19
𝜀3 −

98

119
𝜀2) ʈ5 + (−

254191745510920022999040

115264633790709
−

7

72
𝜀4 −

11

129
𝜀7 −

11

198
𝜀2 +) ʈ18 

𝛽(ʈ) = (−
45464

786025
−

1

2
𝜀1) + 𝜀8 + (

3452732

456025
+ 𝜀1) ʈ 

where 𝜀ᶈ, 1 ≤ ᶈ ≤ 8, are non-zero chosen values and every 𝜀ᶈ is smaller than 𝜀ᶈ−1 then (2.3.2) has 

eight different real periodic solution that are non-trivial. 

Proof 

Multiplicity of origin is 10 due to selected coefficients  𝜀ᶈ = 0 for 1 ≤ ᶈ ≤ 8. Select  𝜀1 ≠ 0 but all 

other 𝜀ᶈ = 0 ,2 ≤ ᶈ ≤ 8 then it noted that, 

𝜀2 = 𝜀3 =  … = 𝜀7 = 0 but 𝜀8 ≠ 0 and  Ϧ9 is constant multiple of 𝜀1, so 𝜇 = 9. 
In this procedure multiplicity is reduced by 1. Take 𝜀2 ≠ 0 but 𝜀3 = 𝜀4 =  … = 𝜀8 = 0 ; we have  eta2 

to eta5 all zero but then 𝜂6 ≠ 0 and 𝜂7 is constant multiple of 𝜀2, so 𝜇 = 8. Here also multiplicity is 

decrease by one. 

If the value of 𝜀2 is small enough then we have two real periodic solution that are non-trivial. 

Continuing in this way, we have eight real periodic solutions that are non-trivial. 

 

 

Corollary  

Take 𝛼(𝑡) and 𝛽(𝑡) given in result (3.3.8), then 

                                           
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2 + 𝛾(ʈ)𝑧 + 𝛿.                                                  (3.3.9) 

have ten periodic solutions provided that 𝛾 and 𝛿 are small enough. 

Proof 

If  𝛾(ʈ) = 0, Զ = 0 and 𝜇 = 2 then equation (3.5.15) gives eight real periodic solutions. If  𝛾(ʈ) is not 

equal to zero, then 𝜇 = 1 and then same arguments used in above theorem we have nine real periodic 

solutions. Since  𝑧 = 0 is another solution therefore we have eight real periodic solutions.  
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Periodic solution of class 𝐶18,2 

Let’s 𝐶18,3 express equation of the type   

                                              
ɗ𝑧

ɗʈ
= 𝛼(ʈ)ʐ3 + 𝛽(ʈ)ʐ2 

where 𝛼(ʈ) has degree 18 and 𝛽(ʈ) has degree 2 respectively that is, 

 𝛼(ʈ) = 𝑐 + 𝑑ʈ + 𝑒ʈ2 + 𝑓ʈ3 + 𝑔ʈ4 + ℎʈ5 + 𝑖ʈ6 + 𝑗ʈ7 + 𝑘ʈ8 + 𝑙ʈ9 + 𝑚ʈ10 + 𝑛ʈ11 + 𝑜ʈ12 + 𝑝ʈ13 +
𝑞ʈ14 + 𝑟ʈ15 + 𝑠ʈ16 + 𝑢ʈ17 + 𝑣ʈ18 
and 

                                         𝛽(ʈ) = 𝑎 + 𝑏ʈ +𝑤ʈ2 
Then by using formula of eta2 given in literature  

 𝜂2 = 𝑎 +
𝑏

2
 +

𝑤

3
 

and 

  𝜂3 = 𝑐 +
𝑑

2
+

𝑒

3
+

𝑓

4
+

𝑔

5
+

ℎ

6
+

𝑖

7
+

𝑗

8
+

𝑘

9
+

𝑙

10
+

𝑚

11
+

𝑛

12
+

0

13
+

𝑝

14
+

𝑞

15
+

𝑟

16
+

𝑠

17
+

𝑢

18
+

𝑣

19
Origin 

multiplicity will be  𝜇 = 2 if 𝜂2 ≠ 0 and 𝜇 = 3 if   𝜂2 = 0 and 𝜂3 ≠ 0, for origin multiplicity higher 

then 3 we consider 𝜂2 = 𝜂3 = 0 ,it gives us  

         𝑢 = −(
𝑏

2
 +

𝑤

3
)                                                                                   (3.4.1) 

𝑐 = −(
𝑑

2
+

𝑒

3
+

𝑓

4
+

𝑔

5
+

ℎ

6
+

𝑖

7
+

𝑗

8
+

𝑘

9
+

𝑙

10
+

𝑚

11
+

𝑛

12
+

0

13
+

𝑝

14
+

𝑞

15
+

𝑟

16
+

𝑠

17
+

𝑢

18
+

𝑣

19
)                        

(3.3.2) 

Now function 𝛼(𝑡) and 𝛽(𝑡) becomes 

𝛼(ʈ) = −(
𝑑

2
+

𝑒

3
+

𝑓

4
+

𝑔

5
+

ℎ

6
+

𝑖

7
+

𝑗

8
+

𝑘

9
+

𝑙

10
+

𝑚

11
+

𝑛

12
+

0

13
+

𝑝

14
+

𝑞

15
+

𝑟

16
+

𝑠

17
+

𝑢

18

+
𝑣

19
) + 𝑑ʈ + 𝑒ʈ2 + 𝑓ʈ3 + 𝑔ʈ4 + ℎʈ5 + 𝑖ʈ6 + 𝑗ʈ7 + 𝑘ʈ8 + 𝑙ʈ9 + 𝑚ʈ10 + 𝑛ʈ11 + 𝑜ʈ12

+ 𝑝ʈ13 + 𝑞ʈ14 + 𝑟ʈ15 + 𝑠ʈ16 + 𝑢ʈ17 + 𝑣ʈ18 

a                               (3.3.3) 

  𝛽(ʈ) = −(
𝑏

2
 +

𝑤

3
) + 𝑏ʈ +𝑤ʈ2                                                                                                 (3.4.2)  

                 𝜂4: = {
7

1440
𝑏𝑗 +

7

1485
𝑘𝑏 +

1

220
𝑙𝑏 +

5

1144
𝑚𝑏 +

55

13104
𝑛𝑏 +

11

2730
𝑜𝑏 +

13

3360
𝑝𝑏 +

91

24480
𝑞𝑏 +

35

9792
𝑟𝑏 +

10

2907
𝑠𝑏 +

17

5130
𝑢𝑏 +

17

5320
𝑣𝑏 +

1

360
𝑔𝑤 +

5

1512
ℎ𝑤 +

1

280
𝑖𝑤 +

35

9504
𝑗𝑤 +

1

270
𝑘𝑤 +

21

5720
𝑙𝑤 +

5

1386
𝑚𝑤 +

11

3120
𝑛𝑤 +

5

1456
𝑜𝑤 +

143

42840
𝑝𝑤 +

7

2160
𝑞𝑤 +

65

20672
𝑟𝑤 +

7

2295
𝑠𝑤 +

85

28728
𝑢𝑤 +

3

1045
𝑣𝑤 −

1

360
𝑑𝑤 +

1

560𝑓𝑤
+

1

360
𝑒𝑏 +

1

240
𝑓𝑏 +

1

210
𝑔𝑏 +

5

1008
ℎ𝑏 +

5

1008
𝑖𝑏} 

Expression become complicated and further calculation to find focal values are not possible. For 

simplicity choose some coefficients of polynomial alpha and beta and assume the simplified class.          

Theorem 

Let 𝐶18,2 is an equation of kind 

  
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2 

with 𝛼(ʈ) and 𝛽(ʈ) are of degree18 and 2respectively. 

𝛼(ʈ) = 𝘢 + 𝑏ʈ + 𝑐ʈ2 + 𝑒ʈ4 + 𝒔ʈ𝟏𝟖 
and  

                                                        𝛽(ʈ) = 𝑢 + 𝑤ʈ2 

Then 𝜇𝑚𝑎𝑥 𝐶18,2 ≥ 8. 
Proof 
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We compute 𝜂ƥ, ƥ = 2,3, . . ,8 to calculate multiplicity of origin.Thus for chosen polynomial 

coefficients of class, we’ll use formulas and evaluate 

                                          𝜂2 = 𝑢 +
𝑤

3
 

and  

                                            𝜂3 = 𝑎 +
𝘣

2
+

𝑐

3
+

𝑒

5
 + 

𝑠

19
 

Now multiplicity of that origin 𝑧 = 0 is 𝜇 = 2 if 𝜂2 ≠ 0 and 𝜇 = 3 if  𝜂3 ≠ 0. To compute the greater 

multiplicity, we took 𝜂2 = 0 𝑎𝑛𝑑 𝜂3 = 0 after putting this we obtain  

                                               𝑢 =  −
𝑤

3
                                                                                    (3.4.3) 

and 

                                           𝑎 = −
𝘣

2
−

𝑐

3
−

𝑒 

5
 - 

𝑠

19
                                                                          (3.4.4) 

 

We use above two equations to evaluate 𝜂4 also modified 𝛼(ʈ) and 𝛽(ʈ) are  

               𝛼(ʈ) = −
𝘣

2
−

𝑐

3
−

𝑒 

5
 - 

𝑠

19
 - 

𝑠

19
+ +𝑏ʈ + 𝑐ʈ2 + 𝑒ʈ4 + 𝒔ʈ𝟏𝟖                                           (3.4.5) 

               𝛽(ʈ) = −
𝑤

3
+

𝑤

3
 ʈ                                                                                                        (3.4.6)  

                                          𝜂4 =
−𝑤

75240
(−216𝑠 − 209𝑒 + 209𝑏) 

Now for  𝜂4 = 0 i.e. 

                            𝑤(−216𝑠 − 209𝑒 + 209𝑏) = 0 

So, either 𝑤 = 0 

or            e = −
216

209
𝑠 + 𝑏                                                                         (3.4.7) 

 

If 𝑤 = 0 then we find  𝛽(ʈ) = 0 and also 𝜂3 = 0 .Using eta3 equal to zero we get average values of 

alpha also zero then by use of corollary given already, the origin becomes center if 𝑤 = 0 hereafter 

we took 𝑤 ≠ 0. Thus we have  

         e = −
216

209
𝑠 + 𝑏                                                                                                 

Thus 𝛼(ʈ) and 𝛽(ʈ) becomes  

𝛼(ʈ) =            

𝛽(ʈ) = −
𝑦

4
+

𝑦

4
ʈ                         

using above equations we calculate          

 𝜂5 = 𝑤2(
313344𝑠−7429𝑏

545113800
 ) 

If 𝜂5 = 0. 
Then we take      

   𝑏 =
313344

7429
(

𝑠

11
)                                (3.4.8)                                                                               

As 𝑤 ≠ 0 (proved). 

We use value of b and measure 𝜂6 and for this Ձ(ʈ) and ϐ(ʈ) becomes  

  𝛽(ʈ) = −
𝑦

4
+

𝑦

4
ʈ                                   

    𝜂6 =
(17𝑠𝑤)(9634447461797𝑤2+4508126032896𝑐)

99427333128985242501120
                                                                                          (3.4.9) 

Since 𝑠, 𝑤 ≠ 0 (proved) and we took                

𝑠 = −
4210495

11854848
 𝑤2                     

Using value of s given in above equation to measure 𝜂7 thus 𝛼(ʈ) and𝛽(ʈ) become 

 𝛽(ʈ) = −
𝑦

4
+

𝑦

4
ʈ                                   
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          𝜂7 =
−1927 𝑤4(−9634447461797𝑤2+4508126032896𝑐)

99427333128985242501120`
  

If we put 𝜂7 = 0 then y= 0 then the origin is center or 

  𝜂8= =
1787505292056599530079290154297

2571224385578699276765755284020369817600
𝑤7 

Thus 𝜇𝑚𝑎𝑥(𝐶18,3) = 8 if all results attained in above equation hold and (𝑤)(𝑠) ≠ 0. 
 

Theorem  

Consider equation 

    
ɗ𝑧

ɗʈ
= Ձ(ʈ)𝑧3 + ϐ(ʈ)𝑧2 

                                                                                                                       (3.4.10) 
where 

 𝛼(ʈ) = (−
964707

13149076
𝑞2 −

1087

153192
𝜀2 −

9

160
𝜀1) + (

8158131596892117133

2458625098192963360
𝑞2 +  𝜀1) 𝑡2 + (

1153909

2114490
𝑞2 +

𝜀2) ʈ7 + (−
1533993897

140178209
𝑞2 −

9505

4408
𝜀2 + 𝜀4) ʈ8 + (

724238852

13121066493
𝑞2 +   

81640

80001
𝜀2 + 𝜀5) ʈ18 

𝛽(ʈ) = (
55219897193640

140709001087
−

1

2
 Ԑ1) + Ԑ6 + (−

1104386394387280

1407060591087
 +Ԑ1)ʈ^2 

Ifᶖ, 1 ≤ ᶈ ≤ 6, if we select all these are not equal to zero and also each Ԑᶈ is smaller as Ԑᶈ−1 then above 

equation gives 8 real periodic solutions that are not trivial solutions. 

Proof 

The coefficients that are selected above gives origin multiplicity 8 if Ԑᶖ = 0 for 1 ≤ ᶖ ≤ 6. Pick  Ԑ1 ≠

0 but  Ԑᶖ = 0 for 2 ≤ ᶖ ≤ 6 gives us ῃ2 = ῃ3 =  … … … … = ῃ5 = 0 but ῃ7 ≠ 0 also ῃ7 is constant 

multiple of Ԑᶖ ,gives և = 7. 

So one multiplicity is decrease. Then we take Ԑ2 ≠ 0, Ԑ3 = Ԑ4 =  … . . = Ԑ5 = 0 ; we have  ῃ2 = ῃ3 =
ῃ4 = 0 , ῃ6 ≠ 0 and ῃ6 is constant multiple of Ԑ2, so և = 6. Here also one multiplicity is decreased. 

 Ԑ2 is small and we attain two real periodic solutions that are non-trivial. Repeating in this way, we 

find eight real periodic solutions that are non-trivial. 

Corollary  

Taking 𝛼(ʈ) and 𝛽(ʈ) used in above result, equation. 

                                          
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2 + 𝛾(ʈ)𝑧 + 𝛿                                                    (3.4.11) 

Exhibits ten real periodic solutions in the limit of small 𝛾 and 𝛿 . 
Proof 

If  𝛾(ʈ) = 0, 𝛿 = 0 and 𝜇 = 2 then above equation gives 8 real periodic solutions. If  𝛾(ʈ) is not equal 

to zero, then 𝜇 = 1 and then using concept and logic used in above result we attain nine real periodic 

solutions. As  ʐ = 0 also solution therefore ten real periodic solutions are evaluated.  

Periodic solution of  𝐶18,3 

Elaborate 𝐶18,3 of type 

                                              
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2 

with 𝛼(ʈ) , 𝛽(ʈ) of degree 18 and 3 respectively 

 𝛼(ʈ) = 𝑎 + 𝑏ʈ + 𝑐ʈ2 + 𝑑ʈ3 + 𝑒ʈ4 + 𝑓ʈ5 + 𝑔ʈ6 + ℎʈ7 + 𝑖ʈ8 + 𝑗ʈ9 + 𝑘ʈ10 + 𝑙ʈ11 + 𝑚ʈ12 + 𝑛ʈ13 +
𝑜ʈ14 + 𝑝ʈ15 + 𝑞ʈ16 + 𝑟ʈ17 + 𝑠ʈ18 
and 

                                         𝛽(ʈ) = 𝑢𝑖 + 𝑣𝑖ʈ +𝑤𝑖ʈ
2 + 𝑦𝑖ʈ

3 
Using formula of eta 2 in literature 

 𝜂2 = 𝑢𝑖 +
𝑣𝑖

2
 +

𝑤𝑖

3
+

𝑦𝑖

4
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  𝜂3 = 𝑎 +
𝑏

2
+

𝑐

3
+

𝑑

4
+

𝑒

5
+

𝑓

6
+

𝑔

7
+

ℎ

8
+

𝑖

9
+

𝑗

10
+

𝑘

11
+

𝑙

12
+

𝑚

13
+

𝑛

14
+

𝑜

15
+

𝑝

16
+

𝑞

17
+

𝑟

18
+

𝑠

19
 

 multiplicity will be  𝜇 = 2 only when eta2 is not equal to zero, 𝜇 = 3 when  𝜂2 = 0 and eta3 is not 

equal to zero, for maximum multiplicity we consider 𝜂2 = 0, 𝜂3 = 0 ,it gives us  

       𝑢𝑖  = −(
𝑣𝑖

2
 +

𝑤𝑖

3
+

𝑦𝑖

4
)                                                                                      (3.5.1) 

𝑎 = −
𝑏

2
−

𝑐

3
−

𝑑

4
−

𝑒

5
−

𝑓

6
−

𝑔

7
−

ℎ

8
−

𝑖

9
−

𝑗

10
−

𝑘

11
−

𝑙

12
−

𝑚

13
−

𝑛

14
−

𝑜

15
−

𝑝

16
−

𝑞

17
−

𝑟

18
−

𝑠

19
                        

(3.3.2) 
Now  

𝛼(ʈ) = −
𝑏

2
−

𝑐

3
−

𝑑

4
−

𝑒

5
−

𝑓

6
−

𝑔

7
−

ℎ

8
−

𝑖

9
−

𝑗

10
−

𝑘

11
−

𝑙

12
−

𝑚

13
−

𝑛

14
−

𝑜

15
−

𝑝

16
−

𝑞

17
−

𝑟

18
−

𝑠

19
+ 𝑏𝑡 +

𝑐𝑡2 + 𝑑𝑡3 + 𝑒𝑡4 + 𝑓𝑡5 + 𝑔𝑡6 + ℎ𝑡7 + 𝑖𝑡8 + 𝑗𝑡9 + 𝑘𝑡10 + 𝑙𝑡11 + 𝑚ʈ12 + 𝑛ʈ13 + 𝑜ʈ14 + 𝑝ʈ15 +
𝑞ʈ16 + 𝑟ʈ17 + 𝑠ʈ18                                (3.5.2) 

  𝛽(ʈ) = −
𝑣

2
  -

𝑤

3
−

𝑦

4
+ 𝑣ʈ  +𝑤ʈ2 + 𝑦ʈ3                                                                                                    (3.5.3)  

                 𝜂4: = {−
51

320
𝑏𝑜 +

21

280
𝑙𝑐𝑛 −

13

250
𝑏𝑝𝑠 +

19

340
𝑑𝑛𝑟 −

1

510
𝑏𝑞 −

1

620
𝑐𝑝 +  

1

360
𝑚𝑑𝑜 +

11

310
𝑒𝑛 −

1

260
𝑐𝑞 +

1

460
𝑒𝑜 +

5

108
𝑓𝑛𝑠 −

1

700
𝑑𝑚𝑞 +

1

300
𝑒𝑝 +

3

1412
𝑓𝑜𝑠 +

8

1308
𝑙𝑔𝑛 +

1

760
𝑓𝑝𝑟 +

1

270
𝑔𝑜 +

9

540
ℎ𝑛 +

1

1426
𝑙𝑓𝑞 +

17

12420
𝑔𝑝 +

55

9514
ℎ𝑜 +

6𝑖𝑛𝑟

1425
+

𝑔𝑞

810
+

5

2180
ℎ𝑝 +

𝑖𝑜

570
+

𝑗𝑛

820
+

4ℎ𝑞

3180
+

𝑖𝑝

3210
+

31𝑗𝑜

4220
+

3𝑘𝑛

1544
+

21𝑖𝑞

4228
+

51𝑗𝑝

30820
+

7𝑘𝑜𝑚

1786
+

5𝑙𝑛

1104
+

𝑗𝑞𝑟

570
+

87𝑘𝑝

2510
+

17𝑙𝑜

3720
+

𝑘𝑞𝑠

628
+

21𝑙𝑝

4170
+

7𝑙𝑞𝑠

5780
} 

Expression become complicated and further calculation to find focal values are not possible. For 

simplicity choose some coefficients zero      

Theorem 

Consider 𝐶18,3 , equations of type 

  
ɗ𝑧

ɗʈ
= 𝛼(ʈ)ʐ3 + 𝛽(ʈ)ʐ2 

with 𝛼(ʈ), 𝛽(ʈ) of degree 18 and 3 respectively. 

𝛼(ʈ) = 𝘢 + 𝘥ʈ3 + 𝘣ʈ + 𝑒ʈ4 + ℎʈ7 + 𝒔ʈ𝟏𝟖 
and  

                                                        𝛽(ʈ) = 𝑢 + 𝑦ʈ3 

Then 𝜇𝑚𝑎𝑥 𝐶18,3 ≥ 10. 
Proof 

We compute  𝜂𝑘  𝑘 = 2,3, . . ,10 ,focal values to calculate multiplicity of the origin. So polynomial we 

choose as coefficients of class we are discussing, using previous mentioned formulas 

                                          𝜂2 = 𝑢 +
𝑦

4
 

                                            𝜂3 = 𝑎 +
𝘣

2
+

𝘥

4
+

𝑒

5
+

ℎ

8
 + 

𝑠

19
 

Now multiplicity of origin is two when 𝜂2 ≠ 0 and 𝜇 = 3 when  𝜂3𝑖𝑠 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 or getting greater 

multiplicity select 𝜂2𝑎𝑛𝑑 𝜂3 both zero, which gives us,  

                                               𝑢 = −
𝑦

4
                                                                                    (3.5.4) 

                                           𝑎 = −
𝘣

2
−

𝘥

4
−

𝑒

5
−

ℎ

8
 - 

𝑠

19
                                                                          (3.5.5) 

 

We evaluate 𝜂4 ,using above equations we obtain 

               𝛼(ʈ) = −
𝘣

2
−

𝘥

4
−

𝑒

5
−

ℎ

8
 - 

𝑠

19
+ 𝘥ʈ3 + 𝘣ʈ + 𝑒ʈ4 + ℎʈ7 + 𝒔ʈ𝟏𝟖                                           (3.5.6) 

               𝛽(ʈ) = −
𝑦

4
+

𝑦

4
 ʈ                                                                                                        (3.5.7)  
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                                          𝜂4 =
1

6292800
𝑦(14580𝑠 + 15295ℎ + 6992𝑒 − 26220𝘣) 

Now for  𝜂4 = 0 i.e. 

                            𝑦(14580𝑠 + 15295ℎ + 6992𝑒 − 26220𝘣) = 0 

Implies that either 𝑦 = 0 

or            s = (−
15295

14580
ℎ −

6992

14580
𝑒 −

26220

14580
𝘣)                                                                         (3.5.8) 

 

If we avail possibility of 𝑦 = 0 ,the result we get is  𝛽(ʈ) = 0 also 𝜂3 = 0 .Which shows that average 

values of alpha zero . Therefore by previously stated result the origin become center if we choose 𝑦 =
0 ,so we neglect this possibility and avail other possibility that is  

         s = (−
15295

14580
ℎ −

6992

14580
𝑒 −

26220

14580
𝘣) 

                                                                                                          

𝛽(ʈ) = −
𝑦

4
+

𝑦

4
ʈ                         

using above equations, we calculate          

 𝜂5 = 𝑦2(
21216𝘣−9740 𝑒−17479 ℎ

573168960
 ) 

If 𝜂5 = 0. 
Then one possibility is     

   ℎ =
21216𝘣−9740 𝑒

17479
                                (3.5.9)                                                                               

As we have no option to choose y=0 

 evaluate  𝜂6 using 

  𝛽(ʈ) = −
𝑦

4
+

𝑦

4
ʈ                                   

    𝜂6 =
𝑦(5𝘣+ 𝑒)(526511745𝑦2+1037554880𝘣−73295288𝑒)

59098906907040000
 

We want  𝜂6 = 0 which will be possible if 

 𝑦 = 0  and other option is 

𝘣 =
−526511745𝑦2+73295288𝑒

1037554880
                                                                                                        (3.5.10) 

As cant choose the possibility of y=0 ,so other possibility is               

𝘣 =
−526511745𝑦2+73295288𝑒

1037554880
                     

To evaluate 𝜂7 use 

 𝛽(ʈ) = −
𝑦

4
+

𝑦

4
ʈ                                   

      

     𝜂7 =  
17181 𝑦2(−15 𝑦+8 𝑒)(−23436276854222315𝑦2+24713761516349472𝘥+17355654635081720𝑒)

21321753655398581881061376000`
 

    

 𝜂7 = 0 will be possible if  y= 0  or 

𝑒 =
−1

17355654635081720
(−23436276854222315𝑦2 + 24713761516349472𝘥) 

  

𝜂8 = (−5727𝑝)(1034296970839695785𝑝2 + 2805011932105665072𝑑) 

(−753591555293996049012482713648662790564068050079354170136368575𝑝4 − 

543551674050415329378864861920934261444222966618447211258380𝑑𝑝2 + 

84609847436502855398959200884758071574619539754157710943792𝑑2} 

(
1

785420545155523182398698565700559638665845155781876056110487043469561339857858673662976000000000`
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 𝜂9 =
− 𝑝5(32316953748791490270578623333421228337050+353792002267594020196765448497824951889𝑝)

301503418083057169528674955861126461817651200
 

 𝜂10 =  
−185021442803374359856908356904260600199266086608357042249639831392964645

106833599277768940696058124987614991716
 

= constant 

 So 𝜇𝑚𝑎𝑥(𝐶18,3) = 10 if all results hold and 𝑦(𝑠) ≠ 0. 
3.4.2Theorem  

Assess equation                                                                                                  

                                     
ɗ𝑧

ɗʈ
= 𝛼(ʈ)𝑧3 + 𝛽(ʈ)𝑧2                                                                            (3.5.11) 

 𝛼(ʈ) = (−
3542964569707

780345076192976
𝑞2 −

1

4
𝜀2 −

347887

15325192
𝜀1 −

36

5720
𝜀3 −

1

7
𝜀4) + (

12426874

2347697
𝑞2 −  𝜀1) 𝑡2 +

(
1152461909

348794090
𝑞2 + 𝜀3) ʈ7 + (−

153399897

778209
𝑞2 −

95095

47408
𝜀3 + 𝜀4) ʈ8 + (

8852

130493
𝑞2 +     

81690

693001
𝜀2 + 𝜀3) ʈ11 

𝛽(ʈ) = (
552193173897193640

1407090060591087
−

1

2
 Ԑ1) + Ԑ8 + (−

1104386347794387280

1407090060591087
 +Ԑ1)ʈ 

If 1 ≤ ᶈ ≤ 8, if we assume these are non-zero satisfying condition each Ԑᶈ is smaller than Ԑᶈ−1 then  

8 real periodic solution that are non-trivial of above equation exist. 

Proof 

The origin multiplicity is 8 for selected above coefficients, if Ԑᶖ = 0 for 1 ≤ ᶖ ≤ 8. Pick  Ԑ1 ≠ 0 but 

then unselected Ԑᶖ = 0 for 2 ≤ ᶖ ≤ 8 ,also ῃ2 = 0, ῃ3 =  … … … … = ῃ5 = 0 , ῃ7 ≠ 0 with ῃ7 is 

multiple of Ԑᶖ , so և = 7. 

In this way multiplicity is equal to less than 1 of previous multiplicity. After this,choose Ԑ2 ≠ 0 but 

Ԑ3 = Ԑ4 =  … . . = Ԑ5 = 0 ;and verify  ῃ2 = ῃ3 = ⋯ . ῃ5 = 0 , ῃ6 ≠ 0 and ῃ6 is constant multiple of 

Ԑ2, hence և = 6 obtained after minimize by one. 

If value of Ԑ2 is between 0 and 1 then gives two real periodic solutions that are not trivial. By following 

this procedure, eight real periodic solutions also non-trivial are obtained. 

Corollary  

Using 𝛼(ʈ) , 𝛽(ʈ) as in above theorem,  

                                          
ɗ𝑧

ɗʈ
= 𝛼(ʈ)ʐ3 + 𝛽(ʈ)ʐ2 + 𝛾(ʈ)ʐ + 𝛿                                                    (3.5.12) 

Exhibits ten real periodic solutions in the limit of small 𝛾 and Զ . 
Proof 

If  𝛾(ʈ) = 0, 𝛽 = 0 with multiplicity 2 then above equation provide eight real periodic solutions. We 

choose  𝛾(ʈ) is not equal to zero gives 𝜇 = 1 then controversy used in previous theorem we attain real 

periodic nine solutions. As 𝑧 = 0 also satisfy it, so we get real ten periodic solutions.  

3.6 Resolution. 

We calculate solutions that are periodic of certain classes but actual problem to derive a formula for 

Hilbert number is still unsolved 

In short, the study of limit cycles is a complex area of research with its application to understand 

complex systems. The transformation (1.4.3) gives us a path for examining limit cycles, and the 

Poincaré-Bendixson theorem and bifurcation techniques are important methods to confirm the 

existence of limit cycles. Next We are interested center focus problem of higher order and make new 

methods to find behavior of limit cycle also find limit cycle application in new field of network science. 
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