Physical Education, Health and Social Sciences

https://journal-of-social-education.org

E-ISSN: <u>2958-5996</u> P-ISSN: <u>2958-5988</u>

Sonographic Assessment of Various Causes of Pelvic Pain in The First Trimester of Pregnancy Across Different Age Groups

Mahnoor Riaz¹, Ume Tayyba², Munaza Shahid³, Sawera Akhtar⁴, Mahrukh Afzal⁵, Nazish Bibi⁶, Khadija Shabir⁷, Muhammad Zain Ul Abidin⁸

^{1,2,4,5,6,7} Student BSMIT Superior University Lahore

Corresponding Author: Mahnoor Riaz Mahnoorriaz354@gmail.com

DOI: https://doi.org/10.63163/jpehss.v3i2.295

Abstract:

Background: Acute pelvic pain during early pregnancy presents diagnostic challenges due to varying underlying causes. Ultrasonography is the primary imaging modality used in these scenarios due to its safety and diagnostic accuracy

Objective: To evaluate the effectiveness of ultrasonography in identifying various causes of pelvic pain during the first trimester of pregnancy across different age groups. **Methods:** A descriptive study was conducted at the University of Lahore Teaching Hospital. A total of 82 symptomatic pregnant women in their first trimester were included through convenience sampling. Transabdominal and transvaginal ultrasounds were performed. Data analysis was conducted using SPSS v24

Results: Among 82 participants, 35.4% experienced bleeding. The most common findings were fibroids (22%), corpus luteal cysts (17.1%), and ectopic pregnancies (9.8%). A strong association was noted between fibroids and bleeding (p < 0.001). The majority of patients (63.4%) had normal findings, and younger women (18–27 years) represented the most affected age group.

Conclusion: Ultrasonography is essential in diagnosing pelvic pain causes during early pregnancy. Fibroids, corpus luteal cysts, and ectopic pregnancies are the predominant pathologies, with a higher prevalence among younger patients.

Keywords: pelvic pain, early pregnancy, ultrasound, fibroids, corpus luteal cyst, ectopic pregnancy

Introduction:

Pelvic pain during the first trimester is a common complaint in emergency and outpatient settings. Hormonal shifts, uterine growth, and increased blood flow often contribute to physiological pain. However, pain accompanied by vaginal bleeding or systemic signs can indicate more serious pathologies such as ectopic pregnancy, miscarriage, or ovarian torsion. Ultrasound provides real-time, non-invasive insight into these conditions, aiding prompt diagnosis and management.

Materials and Methods:

Study Design: Descriptive cross-sectional **Setting:** University of Lahore Teaching Hospital

³ Lecturer Faculty of Allied Health Science Superior University Lahore

⁸ Neuroradiology Specialist Services Institute of Medical Science Lahore

Duration: 4 months

Participants: 82 pregnant women, aged 16-44, experiencing lower abdominal pain during

the first trimester

Inclusion Criteria: Symptomatic lower abdominal pain, confirmed first-trimester pregnancy

Exclusion Criteria: Asymptomatic patients

Data Collection: Data were recorded using structured forms noting patient age, ultrasound

findings (gestational sac, CRL, FHR, fibroids, cysts), and symptomatology

Imaging Protocol: Both transabdominal (2–5 MHz) and transvaginal (5–7.5 MHz)

ultrasound scans were performed

Analysis: Descriptive statistics and chi-square tests were used to evaluate associations using

SPSS v24

Results:

Age Range	Number of Patients
18–24	26
25–27	23
28–34	14
35–40	18
41–44	4
Total	82

The total number of patients in the study or dataset is 82. This breakdown shows the age distribution of the sample, with the highest number of patients in the 18–24 years and 25–27 yea

yeu								
Descriptive Statistics								
	N	Minimu	Maximu	Mean	Std.	Varianc		
		m	m		Deviation	е		
Age	82	18	44	28.28	7.222	52.155		
Valid N (listwise)	82							

Crosstab								
Count								
Final Diagnosis								
	Fibroi Intramural Norma Submucosa subserosal							
	ds Fibroid 1 1 Fibroid fibroid							
Cause of Pain	No	0	0	40	1	0		
Bleeding	Yes	1	6	12	3	3		

The table provides statistical measures for the age of patients. The minimum age recorded was 18 years, and the maximum was 44 years. The mean age was 28.28 years, with a standard deviation of 7.222, indicating moderate variability in patient age.

Cause of Pain Bleeding * Final Diagnosis

This table cross-analyzes the presence of bleeding with final diagnoses. It shows that most normal cases (40 out of 52) did not report bleeding, while fibroid-related cases and corpus luteal cysts had a mix of bleeding and non-bleeding cases.

Crosstab

Count

Final Diagnosis Corpus luteal Ectopic cyst Dermoid cyst | Dermoid Cyst pregnancy Cause of Pain Bleeding No 2 3 5 Yes 2 1 0 4 3 3 Total 6

This table shows the relationship between bleeding and corpus luteal cysts. Among 14 cases diagnosed with corpus luteal cysts, 10 were in non-bleeding patients, while 4 were in bleeding patients.

This table cross-analyzes the presence of bleeding with final diagnoses. It shows that most normal cases (40 out of 52) did not report bleeding, while fibroid-related cases and corpus luteal cysts had a mix of bleeding and non-bleeding cases.

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
	varuc	uı	(2-siucu)
Pearson Chi-Square	27.400^{a}	8	.001
Likelihood Ratio	31.097	8	.000
N of Valid Cases	82		

a. 16 cells (88.9%) have expected count less than 5. The minimum expected count is .35.

Cause of Pain Bleeding * Ectopic pregnancy

Cause of Fam Dieeding " Ectopic pregnancy							
Crosstab							
Count							
Ectopic pregnancy Total							
		No	Yes				
Cause of Pain Bleeding	No	47	6	53			
	Yes	27	2	29			
Total		74	8	82			

This crosstab shows that among 8 cases diagnosed with ectopic pregnancy, 6 were from patients who did not report bleeding, while 2 cases were from those who did.

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	.417a	1	.519		
Continuity	.066	1	.798		
Correction ^b					
Likelihood Ratio	.438	1	.508		
Fisher's Exact Test				.706	.412
N of Valid Cases	82				

- a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.83.
- b. Computed only for a 2x2 table

Cause of Pain Rleeding * fibroids

Cause of I am Diccumg Tibroids							
Crosstab							
Count							
		fibr	oids	Total			
		No	Yes				
Cause of Pain Bleeding	No	52	1	53			
	Yes	12	17	29			
Total		64	18	82			

This table highlights the strong correlation between fibroids and bleeding. Out of 18 cases with fibroids, 17 (94.4%) were from patients reporting bleeding, whereas only 1 case was from a non-bleeding patient. The Chi-Square test suggests a statistically significant association (p < 0.001).

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	35.214 ^a	1	.000		
Continuity	31.981	1	.000		
Correction ^b					
Likelihood Ratio	37.054	1	.000		
Fisher's Exact Test				.000	.000
N of Valid Cases	82				

- a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.37.
- b. Computed only for a 2x2 table

Discussion:

This study confirms ultrasound's role as a reliable diagnostic modality for first-trimester pelvic pain. Normal pregnancy was the most common finding, aligning with prior literature. Fibroids were significantly associated with bleeding, suggesting their contribution to pain and potential complications. Corpus luteal cysts, although frequent, were typically benign. Ectopic pregnancies, though less common, remain critical due to their risk of rupture and maternal morbidity.

Comparative literature supports these findings. Studies have shown fibroids are more prevalent in older reproductive-aged women and linked to increased miscarriage risk. Ectopic pregnancy, present in 1–2% of pregnancies, often lacks classic symptoms, necessitating routine ultrasound in symptomatic cases. Sonography also offers early visualization of intrauterine pregnancies and distinguishes viable from non-viable gestations.

Conclusion:

Ultrasound is invaluable for evaluating pelvic pain in early pregnancy. While most patients exhibit normal findings, fibroids, corpus luteal cysts, and ectopic pregnancies are key

pathological contributors. Fibroids, in particular, show a strong association with bleeding and highlight the importance of early imaging, especially in younger patients.

Limitations:

- Image quality may be compromised in obese patients
- Early gestations may be challenging to detect
- Operator-dependent variability
- Limited access to transvaginal ultrasound in some settings

Recommendations:

Future studies should include larger, more diverse populations and investigate the influence of maternal age and other risk factors on pelvic pathologies.

References

- American College of Radiology. American Congress of Obstetricians and Gynecologists, American Institute of Ultrasound in Medicine, Society of Radiologists in Ultrasound. Practice guideline for the performance of obstetrical ultrasound. J Ultrasound Med. 2013;32:1083-1.
- Garne E, Loane M, Addor MC, Boyd PA, Barisic I, Dolk H. Congenital hydrocephalus—prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. european journal of paediatric neurology. 2010 Mar 1;14(2):150-5.
- Goh YI, Bollano E, Einarson TR, Koren G. Prenatal multivitamin supplementation and rates of congenital anomalies: a meta-analysis. Journal of obstetrics and gynaecology Canada. 2006 Aug 1;28(8):680-9.
- Tully HM, Dobyns WB. Infantile hydrocephalus: a review of epidemiology, classification and causes. European journal of medical genetics. 2014 Aug 1;57(8):359-68.
- Pessiglione M, Vinckier F, Bouret S, Daunizeau J, Le Bouc R. Computational approach to motivation deficits in neuro-psychiatric diseases. Brain. 2018 Mar 1;141(3):629-50.
- Berkowitz RL, Romero R, Tortora M, Mayden K, Duncan C, Mahoney MJ, Hobbins JC. The diagnosis of fetal hydrocephalus. American journal of obstetrics and gynecology. 2011 Nov 18;147(6):703-15.
- Tulandi T, Al-Fozan HM. Spontaneous abortion: Risk factors, etiology, clinical manifestations, and diagnostic evaluation. UpToDate. 2011 Jun.
- Zeqiri F, Paçarada M, Kongjeli N, Zeqiri V, Kongjeli G. Missed abortion and application of misoprostol. Medical Archives. 2010 May 1;64(3):151.
- Fehmi Zeqiri MD, Myrvete Paçarada MD, Niltene Kongjeli MD. Missed Abortion and Application of Misoprostol. Medical Archives. 2010;64(3):84.
- Budiana IN, Pemayun TG. Diagnosis and Treatment of an Atypical Invasive Mole: A Case Report. Biomedical and Pharmacology Journal. 2020 Jun 25;13(2):805-8.
- Murugan VA, Murphy BO, Dupuis C, Goldstein A, Kim YH. Role of ultrasound in the evaluation of first-trimester pregnancies in the acute setting. Ultrasonography. 2020 Apr;39(2):178.
- Sharami SR, Saffarieh E. A review on management of gestational trophoblastic neoplasia. Journal of Family Medicine and Primary Care. 2020 Mar;9(3):1287.
- Li X, Xu Y, Liu Y, Cheng X, Wang X, Lu W, Xie X. The management of hydatidiform mole with lung nodule: a retrospective analysis in 53 patients. Journal of gynecologic oncology. 2019 Mar 1;30(2).
- Feng X, Wei Z, Zhang S, Du Y, Zhao H. A review on the pathogenesis and clinical management of placental site trophoblastic tumors. Frontiers in oncology. 2019 Nov 28;9:937.
- DAVARI TF, Costanzo V, Bardelli A, Siena S, Abrignani S. Exploring the links between cancer and placenta development. Open biology. 2018 Jun 27;8(6):180081.

- Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation. Clinical and Experimental Reproductive Medicine. 2020 Dec;47(4):245.
- Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation Alternative title (right-running-head): Nanotechnology in reproductive healthcare.
- Tulandi T, Al-Fozan HM. Spontaneous abortion: risk factors, etiology, clinical manifestations, and diagnostic evaluation. In: Rose B, ed. UpToDate. Wellesley, MA: UpToDate, 2017;1-23.
- Rodgers SK, Chang C, DeBardeleben JT, Horrow MM. Normal and abnormal US findings in early first-trimester pregnancy: review of the Society of Radiologists in Ultrasound 2012 Consensus Panel recommendations. Radiographics 2015;35:2135-2148.
- Shaaban AM, Rezvani M, Haroun RR, Kennedy AM, Elsayes KM, Olpin JD, et al. Gestational trophoblastic disease: clinical and imaging features. Radiographics 2017;37:681-700.
- Richardson A, Gallos I, Dobson S, Campbell BK, Coomarasamy A, Raine-Fenning N. Accuracy of first-trimester ultrasound in diagnosis of tubal ectopic pregnancy in the absence of an obvious extrauterine embryo: systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology. 2016 Jan;47(1):28-37.