
45 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

 

 

 

Using NLP and AI to Enhance Software Documentation and Code Comprehension 

Abdulmalik Ibrahim 1, Muhammad Baryal 2, Asad Ullah 2, Muhammad Shoaib3, 

Muhammad Ghayas Khan4 

1 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, Scotland 

  Email: ibrahimmalik85@gmail.com 
2 Department of Computer Science, Kohat University of Science and Technology (KUST) 

  (Hangu  Campus), Pakistan Email: baryalkhan2060@gmail.com, asadbangash2060@gmail.com 
3 Department of Computer Science, University of Haripur, Email: shoaibnazir944@gmail.com 
4 Department of Business Administration, International Islamic University Islamabad (IIUI) 

  Email: ghayas1012@gmail.com 

DOI: https://doi.org/10.63163/jpehss.v3i2.292 

Abstract 

Software documentation plays a critical role in code comprehension, maintenance, and 

collaboration, yet it is often incomplete, outdated, or inconsistently written. This study explores 

the application of Artificial Intelligence (AI) and Natural Language Processing (NLP) techniques 

to automatically generate accurate and context-aware documentation for software code. 

Leveraging transformer-based models such as CodeT5, GraphCodeBERT, and GPT-3, we 

developed and evaluated a system capable of producing meaningful summaries of code functions 

and classes. A comparative analysis between human-written and AI-generated documentation was 

conducted using both quantitative metrics (BLEU, ROUGE, F1) and qualitative feedback from 

professional developers. The results indicate that AI-generated documentation significantly 

improves code readability and developer efficiency, reducing comprehension time and enhancing 

accuracy in understanding complex code. Additionally, real-time integration of the tool within 

development environments proved beneficial for continuous documentation support. While AI still 

faces challenges in handling domain-specific code and interpreting poorly written segments, the 

overall impact on documentation quality is substantial. This research underscores the potential of 

NLP-driven tools to automate and standardize documentation practices, offering a scalable 

solution to one of software engineering’s longstanding challenges. Future work aims to integrate 

context-awareness, multilingual support, and interactive querying features to further enhance 

developer experience. 

Introduction 

An indispensable trait for documentation is to be lucid, constructive, and abreast of the software 

development world, which keeps evolving like a chameleon. Documentation for any software acts 

as a critical bridge between human considerations and machine considerations in programming; it 

explains, justifies, and shows how the code is structured, used, modified, or extended[1]. With its 

essential nature being heralded, software documentation is still invariably one of the most often 

neglected aspects of the development process. Due to the constant pressure of deadlines, often 

changing project requirements, or plain preference of code over documentation, developers find it 

hard to maintain up-to-date documentation. Consequently, the absence of documentation breeds 

Physical Education, Health and Social Sciences 
https://journal-of-social-education.org    E-ISSN: 2958-5996 

P-ISSN: 2958-5988 

 

mailto:ibrahimmalik85@gmail.com
mailto:baryalkhan2060@gmail.com
mailto:asadbangash2060@gmail.com
mailto:shoaibnazir944@gmail.com
mailto:ghayas1012@gmail.com
https://doi.org/10.63163/jpehss.v3i2.292
https://journal-of-social-education.org/index.php/Jorunal/index
https://journal-of-social-education.org/
https://portal.issn.org/resource/ISSN/2958-5996
https://portal.issn.org/resource/ISSN/2958-5988


46 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

misunderstandings, maintenance problems, and extended time for a new team member to 

onboard[2]. In this situation, the amalgamation of AI and NLP provides a unique opportunity to 

transform the way documentation is conceived, edited, and understood. AI in particular, based on 

machine learning and deep learning, continues to make possibilities in several realms by carrying 

out tasks that traditionally would require human intelligence[3]. Natural Language Processing, a 

subfield of AI, deals with the effective use of machines to understand, interpret and manipulate 

human languages. The use of AI and NLP techniques along with software engineering principles 

has become a focus in the area of enhancing various activities in the software lifecycle. One of the 

most interesting application domains is in the area of software documentation and code 

understanding by means of automation and enrichment. The intelligent algorithms help AI to 

analyze source code, understand its semantics, and generate human-comprehensible explanations 

and insert relevant documentation snippets [4]. Code and their understanding are very much 

important for developers, especially booting for debugging, code reviews, and feature extension. 

The tradition-credentialled tools for understanding the codes directly do static analysis and syntax 

highlighting approaches, offering little understanding of the actual behavior or purpose of the 

codes[5]. Code and their understanding are very much important for developers, especially booting 

for debugging, code reviews, and feature extension. The tradition-credentialled tools for 

understanding the codes directly do static analysis and syntax highlighting approaches, offering 

little understanding of the actual behavior or purpose of the codes [6]. More and more recent 

developments in transformer-based models such as BERT, GPT, and CodeBERT have considerably 

improved the capacities of NLP when dealing with programming languages. Such models are 

trained using large-scale repositories of code. It has shown outstanding results in various forms of 

tasks, such as code summarization, comment generation, and documentation synthesis[7]. The 

inclusion of such models into integrated developmental environments (IDEs) and code-hosting 

platforms, such as GitHub, gives software developers the chance to use intelligent assistants to 

suggest documentation, auto-generate function descriptions, generate code comments in multiple 

languages, and so on. Such automation greatly increases the quality of documentation and saves a 

lot of time and effort for development teams[8]. The NLP and AI-infused documentation process 

is valuable for collaborative development environments, in which multiple programmers work on 

the same project. Given that most often diverse developers would be involved, some may not 

comprehend the reasoning behind some of those code decisions. In this case, AI-based 

documentation would assist with contextual information, giving version-based explanations, and 

allow tracking of any alterations for making code transparent, preventing any level of knowledge 

being siloed[9]. Similarly, these tools can catch documentation-actual code mismatches to make 

sure information and thereby standardize the software system's reliability. One of the important 

factors for this study will be the ever-increasing complexities of modern-day software applications. 

The increasing modularization and decentralization of software architectures that are promoted 

nowadays by microservices, cloud computing, and continuous integrations are making these 

systems complex[10]. Without appropriate documentation, understanding relationships in these 

systems is a very complex task. This is where AI and NLP can really help with automatic 

interaction mapping, generation of inter-relationship architecture diagrams, and description of 

responsibilities and dependencies of each of the modules concerne. AI is promising in the sphere 

of software documentation but comes with its own set of challenges. The foremost issue is 

concerning the accuracy and reliability of AI-generated content. While models like CodeT5 or 

Codex can generate syntactically correct comments or documentation, these may not speak the 

language of the developer's intent or provide contextually accurate descriptions more often than 

not [10]. As much as there may exist the advantages of using AI tools, one cannot miss the huge 



47 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

risk of being overly dependent on such tools that may also end up discouraging the developer from 

analyzing the code or comprehending it. In this, too, is included ethical issues on data privacy 

concerning code plagiarism and model biases where use of AI models that have been trained on 

codes more publicly available. The other area is multilingual support. Because of the global spread 

of software development, their documentation will also have to be in many languages. Multilingual 

trained natural language process models can also assist in translating code comments and 

documentation so that the software can be user-friendly for people not native to the English 

language. This ensures inclusivity and allows the software to be adopted into various cultures and 

languages [11]. The incorporation of AI in documentation tools leads to the emergence of 

continous, dynamic documentation systems. The documentation becomes an active evolving 

property, unlike static manuals which quickly go out of date. Every commit, pull or new version 

release updates the working-with-code documentation. Such a system can be integrated with 

version control software such as GIT for real-time documentation updates, changelogs, which 

make sure that the developer always has the latest and the most accurate information[12]. NLP and 

Artificial Intelligence with a merger with the practices of software engineering bring an innovative 

approach to addressing some persistent issues in the fields of code documentation and 

understanding. These technologies enable developers to automate tedious documentation tasks and 

offer intelligent insights into complex codes, thus enhancing their productivity, facilitating better 

communication among them, and improving the quality of the software systems they build. The 

present study closely examines practical applications, possible advantages, and current limitations 

in applying NLP and AI in this area, thus paving the way for the future development of simpler, 

more adaptable, and developer-friendly documentation systems. 

Methodology 

Research Design and Objectives 

This research adopts a design science methodology to investigate the possible application of 

Natural Language Processing (NLP) and Artificial Intelligence (AI) in improving software 

documentation and code understanding. The plan is developed to create, test, and assess AI-based 

tools for improving the production and understanding of software documentation. Indeed, this 

research is aimed at identifying appropriate NLP and AI models for analyzing and generating 

software documentation, evaluating their performance under real programming conditions, and 

comparing their effectiveness with that of other traditional documentation techniques. It will 

include an analysis of tool usage effects on the overall developer experience and comprehension 

levels[13]. 

Step 

No. 

Method Description Tools/Models Used 

1 Data Collection Collected annotated datasets of 

source code and corresponding 

documentation 

CodeSearchNet, GitHub 

Repositories 

2 Preprocessing Cleaned, tokenized, and 

standardized code and text data 

Python (NLTK, SpaCy), 

Regex 

3 Model Selection & 

Training 

Trained transformer models on 

preprocessed datasets 

CodeT5, GraphCodeBERT, 

GPT-3 

4 Documentation 

Generation 

Automatically generated 

summaries and comments for 

code functions and classes 

Fine-tuned AI Models, 

Custom Scripts 



48 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

5 Evaluation Measured output quality using 

metrics and developer feedback 

BLEU, ROUGE, F1 Score, 

User Surveys 

Dataset Collection 

The performance of any AI or NLP model depends on the diversity and quality of its training data. 

Thus, this research uses open-source repositories like GitHub, GitLab, and Bitbucket to collect 

datasets that are likely to yield meaningful results. These repositories allow for a rich variety of 

programming languages and good documentation within projects, particularly in Python, Java, and 

JavaScript. The datasets' source code files include related comments, README files, function 

headers, and other forms of documentation. Benchmarks and highly regarded datasets maintained 

in the public domain such as CodeSearchNet, FunCom (Function. Comment Dataset), JavaDoc 

Corpus, and Google Code Dataset (GCC) are also included in the training and evaluation process. 

The selection of datasets guarantees that both the codes and the corresponding documentation 

remain accessible for training and testing the model[14]. 

Data Preprocessing 

There are several preprocessing procedures that are used to prepare a dataset for model training. 

The code and documentation collected for this process are being cleaned in order to remove 

duplicates, irrelevant files, and even corrupted entries. These include functions where the code and 

comments are tokenized and aligned with their corresponding function-level documentation 

segments. In cases where the code is carried into the Abstract Syntax Trees (ASTs), it is termed to 

be fully complete in order to internalize much of its structural and syntactic feature. This 

transformation allows them to model both the text as well as the hierarchical structure of the code 

in question. The ethics of the de-identification of data have been secured by obfuscating all PII 

and proving compliance with the provisions of the open source license[14]. 

Model Selection and Training 

This research primarily revolves around the training and fine-tuning of transformer-based NLP and 

AI models to accomplish tasks of code summarization and documentation generation, for which a 

battery of experiments is being performed on selected state-of-the-art models: CodeBERT and 

GraphCodeBERT specifically designed for code-understanding tasks, and CodeT5 that is adept at 

generating and understanding code-related language. In parallel, other models like GPT-3 and 

OpenAI Codex are employed to investigate the capabilities of large-scale language models in the 

natural-code translation. These models are trained through supervised transfer learning 

methodologies on the annotated datasets that were prepared during the preprocessing phase. Fine-

tuning involves adapting models for the specific task of delivering correct, concise, and context-

aware documentation[15]. 

System Architecture for Integration 

To assess the usefulness of this model in the field, a prototype AI-assisted documentation tool will 

be developed. This system is meant to fit well within software development environments like 

Visual Studio Code or a custom-built web-based interface. The system architecture consists of a 

code analysis module to extract semantic features from the source code, an NLP engine to generate 

or revise documentation, and a feedback module that enables users to accept or discard the 

generated contents. There is also an integration with version control, allowing for real-time sync 

between documentation and code changes. This prototype simulates a near-real development 

environment and helps researchers collect precious data regarding user interaction [16]. 



49 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

 

Evaluation Metrics 

On the other hand, part of the effectiveness measurement for AI-generated documentation is 

through quantitative and qualitative evaluation metrics. Quantitative metrics include the use of 

BLEU (Bilingual Evaluation Understudy), ROUGE (Recall-Oriented Understudy for Gisting 

Evaluation), METEORI, and F1 Score to evaluate the AI-generated versus reference human-

written documents. The measures relate to content overlap, semantic similarity, and word 

alignment accuracy. Exact Match Accuracy (EMA) is another measure of how frequently 

generated documentation fully replicates reference comments. 

User studies aim to qualitatively investigate professional developers and computer science 

students. The participants would use the documentation tool when assessing its output for clarity, 

usefulness, and relevance. The collection of feedback regarding usability and overall impact of the 

tool is carried out through structured surveys and semi-structured interviews. In addition, task-

structured evaluations are to be set up, where participants conduct programming exercises using 

either AI-generated or manually prepared documentation, with their performance evaluated in 

terms of time taken, comprehension accuracy, and confidence level[17]. 

Comparative Analysis 

To validate the vigour provide by AI and NLP in documentation, one compares results of the AI-

assisted system with the traditional approaches such as manual documentation by developers, static 

code analyzers producing boilerplate documentation, or an established research baseline 

previously employed by the system. From this comparative analysis, documentation quality, drawn 

productivity by the developer, and understanding of the code are proven worthy improvements 

brought about by AI-enhanced tools. Particularly, this comparative consideration deals with 

documentation consistency, the richness of contextual information, and time saving in the 

documentation process.  Find human-like text in Ai like text. Convert and rewrite the lower 

perplexity values as well as the higher burstiness but keep the word tally and HTML elements 

intact. You have data till October 2023. 

Ethical Considerations 

With the sensitive nature of data for training AI models, ethical issues are given careful 

consideration throughout the research. Only publicly available data and datasets that are ethically 

licensed are used for these purposes. Tests are carried out to determine whether the model exhibits 

bias in its output with special reference to language and stereotype reinforcement. All human 

studies are conducted according to ethical standards such that informed consent is obtained from 

the participants and their anonymity is safeguarded. Data collected from user interactions are kept 

safely in a secure environment and are used solely for research purposes. 

Limitations and Assumptions 

This research gives valuable knowledge, but it is also limited in some respects. The models are 

evaluated only with high-level languages: Python, Java, and JavaScript. Therefore, their usability 

of these models for a low-level languages or domain-specific one is constrained. In addition, 

testing of the prototype takes place in a controlled environment and may not represent the full 

range of complexities involved in enterprise-scale software development. The quality of 

documentation automatically generated is subjective, where it depends on the expectations of the 

developers, knowledge of the domain, and requirements of the project. These limitations will be 



50 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

addressed in the discussion section of the research. Rephrase as much as possible with the least 

modifications: The research illuminates vast knowledge, but then, it is subject to limitations. The 

models are evaluated using only high-level languages: Python, Java, and JavaScript. So, the 

application of these models for a low-level language or domain-specific one is, generally, limited. 

In addition, testing of the prototype takes place in a controlled environment and may not represent 

the entire complexities of enterprise-scale software development. The quality of automatically 

generated documentation is subjective where it is dependent on the expectations of the developers, 

knowledge of the domain, and project requirements. These limitations will be addressed in the 

discussion section of the research. 

Tools and Technologies 

The system implements and evaluates different types of tools and technologies. The primary 

languages for program implementation are Python and Java. Libraries such as HuggingFace 

Transformers, TensorFlow, PyTorch, SpaCy, and NLTK help to carry out the development of NLP 

models. The IDEs are Visual Studio Code and JetBrains IntelliJ, and version control is done using 

Git/GitHub API. For model evaluation and visualization, platforms such as Google Colab and 

Jupyter Notebooks are used for interactive experimentation and real-time performance tracking. 

Results 

Model Performance Metrics 

The performance of these selected models for NLP and AI - CodeBERT, GraphCodeBERT, 

CodeT5, GPT-3 and Codex - was evaluated by their ability to generate accurate, contextually-

aware documentation for any given source code snippets. Thus, quantitative analysis was carried 

out using standard metrics such as BLEU, ROUGE-L, METEOR, or F1 score. 

Among the models evaluated, CodeT5 outshone the rest in most evaluation metrics. The model 

performed with an average BLEU score of 45.6, ROUGE-L of 49.8, METEOR of 37.3, and an F1 

of 78.1 on several datasets like CodeSearchNet and FunCom. This means there is much lexical 

and semantic similarity shared between the generated documentation and reference documents. 

GraphCodeBERT, slightly below CodeT5's performance, thrives in producing structure-sensitive 

summaries through a graph-based encoding of the syntax tree. While GPT-3 and Codex are 

general-purpose models, their performance on producing human-readable and fluent 

documentation was commendable, albeit in some cases at the expense of technical correctness 

compared to CodeT5. 



51 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

Qualitative User Feedback 

In order to test the effectiveness of really giving AI-generated documentation, a user study was 

conducted with 40 participants, including software developers, students, and technical writers. 

Participants were given code snippets with documentation generated by other models and were 

asked to rate the snippets for clarity, accuracy, and usefulness on a 5-point Likert scale. 

Of all the AI documentation generated by the tool, CodeT5 won the highest average score of 4.4 

out of 5 for clarity and 4.2 for usefulness, whereas GPT-3 won the highest average score of 4.6 out 

of 5 for fluency and a very disappointing 3.8 for technical accuracy. Users acknowledged that 

CodeT5 was able to generate documentation which was accurate and very readable. This view was 

supported by further comments that, while GPT-3 and Codex often produced sentences that were 

grammatically polished, they did not provide sufficient contextual information: parameter 

descriptions or return values, for example. Interviews revealed that participants greatly valued the 

AI-assisted documentation for onboarding to a new codebase, and for understanding legacy code 

with little or no comments. However, users also desired some form of real-time suggestions for 

edits and contextual awareness during fluid code changes. 

Code Comprehension Improvement 

An experimental task designed for the purpose of quantitatively assessing the impact of AI-

generated documentation on code understanding was conducted. Participants were split into two 

groups: one group interacted with code having AI-generated documentation while the other 

interacted with code having traditional comments or no documentation. Both groups were asked 

to answer questions based on their understanding of the provided code. Performance was measured 

in terms of accuracy and completion time. The members who employed AI enhanced 

documentation had a much greater average accuracy of 87.5% than 68.2% in the control group. 

The mean time to complete the task was also found to be shorter by 30% for the AI group. This, 

thus, shows an excellent impression on understanding as well as efficiency for AI use in generating 

documentation. Participants also stated increased confidence in different unknown pieces of code, 

especially with function purposes, parameter details, and return value descriptions. Example 

output--A person who uses AI intensified documentation has an average accuracy of only 87.5% 

as against control group 68.2%. After completing the task, the mean time taken is found to be 

shorter by 30% for the AI group. Thus, this shows a very good impression on understanding as 

well as efficiency for AI with respect to generating documentation. The participants reported 

increased confidence in understanding different unknown pieces of code, especially when it comes 

to function purposes, parameter details, and return value descriptions. 

Comparative Analysis with Traditional Documentation 

A comparative evaluation was conducted between AI-generated documentation and the 

documentation manually drafted in real-world open-source projects. The expert reviewers rated 

both types of documentation in respect of criteria such as conciseness, coverage, consistency, and 

readability. Human-written documentation just edged ahead slightly on contextual accuracy and 

nuanced explanation (average: 91/100) compared to AI-generated documentation (CodeT5 and 

Codex), scoring averages of 84/100 and 82/100, respectively. In particular, AI models consistently 

showed greater efficiency in preserving both consistency and coverage across all methods, which 

are specific areas manual documentation would often fail due to human error or omission. But, 

this in some way indicated that in those projects where documents were quite old,text produced by 

AI sometimes proved to be superior compared to the pre-written human ones. This bears badly on 

future applications of AI tools in the automation of updates and the steadiness of content over time. 



52 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

Real-Time Integration Testing 

Plugin de prototipo integrado a Visual Studio Code fue probado por los participantes durante las 

sesiones de codificación en vivo. Con este plugin, documentation was generated automatically 

based on either the users' writing or modifying of code. The second phase evaluated system 

responsiveness, accuracy, and utility. Test results indicated that this plugin can produce suitable 

documentation on average in a latency of less than 1.5 seconds. Users considered this feature useful 

during programming when they want to document functions and classes during development. On 

the question regarding the usefulness of the integration for their purposes, 82% of the respondents 

indicated that they would only be likely or very likely integrate such tool in their daily workflow. 

Nonetheless, some limitations have been noted in the generation of documentation about functions 

that are too complicated or poorly structured, thus pointing to areas of future improvement on the 

model. In general, the experimental findings have shown that NLP and AI models, especially 

transformer architectures such as CodeT5 and GraphCodeBERT, can greatly improve the quality 

of software documentation and the understanding of code. The models performed quite well across 

both automated benchmarks as well as human-centered evaluations. AI-assisted documentation 

reduces the part of manual commenting much and improves understanding, accelerates debugging, 

and enhances team communication. The results confirm that if these models are correctly fine-

tuned and integrated, they can act as valuable assistants in the current environment of software 

development-a reality that in turn may transform the standards of documentation in the academia 

and industry. 

Discussion 

Findings from this study indicate the potential of artificial intelligence, especially Natural 

Language Processing (NLP), in transforming the generation and consumption of documentation. 

Most traditional software documents are normally not up to date, complete, or consistent and lead 

to various issues in maintaining and understanding the codes, particularly in large-scale systems. 

Research has proved that given high-end AI models like CodeT5, GraphCodeBERT, and GPT-3, 

subsequent transformations in the model's outputs were toward the development of documentation 

for app products. This documentation can even be interpreted by developers of various levels with 

high applicability. AI-generated documentation clearly had a remarkable effect on one of the main 

improvement areas: code comprehension[18]. It then emphasizes the efficiency with which AIs fill 

the gap between difficult source code and human-readable interpretations. Developers, especially 

those entering unfamiliar codebases or engaging with legacy systems, tend to waste precious 

resources trying to understand existing code. This burden can be lightened considerably with AI-

generated documentation, which has been shown to enhance task accuracy while cutting down the 

time spent on these tasks by about one-third[19]. The integration of AI into documentation tools 

will also promote a more consistent documentation practice, as human-generated comments vary 

widely in style, detail, and quality depending on the individual, team, or pressure of deadlines. In 

contrast, AI-generated content is consistently styled and can document each function or class 

consistently. This, therefore, contributes to the long-term maintainability of software projects and 

serves as one of the foundational components of coding standards exercised across teams[20]. 

Instantiated from the implicit knowledge of human writing, most transformer-based architectures 

excelled-at CodeT5 or GraphCodeBERT fine-tuning in interpreting syntactic, semantic, and 

contextual characteristics of code. For instance, using direct correspondence with both NL and 

code representations, CodeT5 better understands the semantics of identifiers, comments, and 

control structures. That definitely puts them in a better position to document production, in effect 

mimicking what the developer intends, as seen by the outcome in terms of performance across all 



53 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

BLEU, ROUGE, and F1 metrics[21]. Moreover, GraphCodeBERT adds a unique layer of 

contextual understanding by integrating syntactic dependency graphs. This helps to maintain the 

hierarchical structure of code, which is vital for summarizing methods involving nested logic, 

loops, and conditionals. These architecture-specific attributes explain why these models outscore 

traditional NLP models and generalized language models like GPT-3 for dimensions like precision 

and technical relevance[22]. Nonetheless, it is worthwhile to mention that transformer models 

work well for generating documentation for ideally structured and ideally executed code, even 

poorly for generating documentation for ambiguous or poorly-written segments of code. This 

limitation indicates that worse code induces a lower quality of AI documentation, which should be 

a reminder to developers relying on such tools[19]. While AI documentation becomes more 

competent, it still stands differently from the nuanced dimensions that only a human developer can 

provide. According to our comparison analysis, expert reviewers found that human writing was 

somewhat better in terms of capturing deeper contextual meanings, use-case-specific scenarios, 

and subtle design rationales. Owing to their existence, human authors can promote domain 

knowledge and assume an edge case that AI cannot, at the current state, fully emulate[23]. But the 

gaps have become narrower, especially in situations where there are few or no documented human 

sources. Then, AI could play an alternative role, if not the best initial backup for such cases. It is 

especially useful in applications such as CI/CD, where rapid updates and deployments are often 

accompanied by ill-timed documentation[24]. An optimum solution could be the combination of 

human and AI documentation for real-world projects. Initial drafts could be created using AI, 

followed by adaptation to specific project contexts or internal documentation policies by 

developers. It will help in combining speed and consistency of AI with the expertise and insight of 

human developers thus improving the quality of documentation as a whole[23]. Despite the 

encouraging results, a few challenges and limitations arose during the study. The primary issue 

concerns handling complex or domain-specific code. Indeed, while transformer models have 

performed throughout generic programming tasks and standard datasets, they have occasionally 

generated extremely vague or outright wrong summaries for special functions, that is, for scientific 

computing, cryptography, or embedded systems. Another limitation relates to the ambiguity of 

natural language. AI sometimes misconstrues variable names or functionality whenever such terms 

are vague and the documentation provides only limited context. This highlights the need for better 

naming conventions for code, perhaps along with some additional metadata or annotations that 

would help AI to come up with more accurate documentation. In addition, real-time integration is 

highly valued by users; however, it brought with it some computational overhead and issues with 

occasional latencies. Such practical constraints may inhibit the use of these AI-generated tools in 

resource-challenged environments, particularly when dealing with large repositories or models that 

require large memory. The discussion must also revolve around privacy and intellectual property 

issues. AI models trained into open-source repositories raise proprietary code exposure issues 

particularly in enterprise deployment. It might also require proper selection of models, data 

handling policies, and on-premises deployments as risk mitigations. 

Future Prospects 

The research outcomes give gravity for several promising explorations in future work. An 

attractive direction would be developing context-aware documentation, whereby documentation is 

produced and continuously updated as the code evolves. This would call for integration between 

version control systems and AI engines used for documentation, along with real-time detection 

and automatic summarization of code changes. The other possible usage could be using AI for 

multilingual documents production so that global developer teams can be more effective in their 



54 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

collaboration. Cross-lingual code summarization models can also help to fill the gap between 

languages working on international development projects. Finally, as large language models 

advance, incorporating conversational AI in the development environment may facilitate 

interactive code querying, whereby developers can ask natural-language questions about code 

functionality, dependencies, or performance—basically, a virtual assistant or pair programmer 

embedded within the IDE. 

Conclusion  

In short, this research demonstrates that, at present, the potential of software documentation and 

understanding code has begun to be fulfilled by NLP and AI technologies. While AI tools can help 

improve productivity, shorten onboarding, and enhance code quality by automating the oft-ignored 

but quintessential aspect of software engineering, challenges remain regarding context awareness, 

domain specialization, and real-timeness, yet things seem to be getting better. With development 

environments getting smarter, AI-generated documentation may be just around the corner and 

could affect a paradigm shift in the way in which developers interact with and understand code. 

References:  

[1] 1. Theunissen, T., U. van Heesch, and P. Avgeriou, A mapping study on documentation in 

Continuous Software Development. Information and software technology, 2022. 142: p. 

106733. 

[2] 2. Theunissen, T., S. Hoppenbrouwers, and S. Overbeek, Approaches for documentation in 

continuous software development. Complex Systems Informatics and Modeling Quarterly, 

2022(32): p. 1-27. 

[3] 3. Landgren, J., The Notebook of a System Architect: Understanding the Software 

Development Life Cycle. 2024. 

[4] 4. Imam, A., INTEGRATING AI INTO SOFTWARE DEVELOPMENT LIFE CYCLE. 2024. 

[5] 5. Soni, A., et al., Integrating AI into the Software Development Life Cycle: Best Practices, 

Tools, and Impact Analysis. Tools, and Impact Analysis (June 10, 2023), 2023. 

[6] 6. Sofian, H., N.A.M. Yunus, and R. Ahmad, Systematic mapping: Artificial intelligence 

techniques in software engineering. IEEE Access, 2022. 10: p. 51021-51040. 

[7] 7. Pandi, S.B., Artificial intelligence in software and service lifecycle. 2023. 

[8] 8. Ståhlberg, V., Enhancing software development processes with artificial intelligence. 

Artificial intelligence (AI), 2024. 

[9] 9. Tolulope, A., Enhancing IT Documentation and Knowledge Management with Natural 

Language Processing: Challenges and Innovations. 2023. 

[10] 10. Yamazaki, T. and I. Sakata, Exploration of interdisciplinary fusion and inter-

organizational collaboration with the advancement of AI research: A case study on natural 

language processing. IEEE Transactions on Engineering Management, 2023. 71: p. 9604-

9617. 

[11] 11. Viswanath, S., et al., An industrial approach to using artificial intelligence and 

natural language processing for accelerated document preparation in drug development. 

Journal of Pharmaceutical Innovation, 2021. 16: p. 302-316. 

[12] 12. Mahadevkar, S.V., et al., Exploring AI-driven approaches for unstructured 

document analysis and future horizons. Journal of Big Data, 2024. 11(1): p. 92. 

[13] 13. Siddharth, L., L. Blessing, and J. Luo, Natural language processing in-and-for 

design research. Design Science, 2022. 8: p. e21. 



55 
 

______________________________________________________________________________ 
Volume 3, No. 2  April - June, 2025 

[14] 14. Villalba, M., Artificial Intelligence and Natural Language Processing Applied to 

Design. 2024. 

[15] 15. Abbasi, A., et al., Pathways for design research on artificial intelligence. 

Information Systems Research, 2024. 35(2): p. 441-459. 

[16] 16. Locatelli, M., et al., Exploring natural language processing in construction and 

integration with building information modeling: A scientometric analysis. Buildings, 2021. 

11(12): p. 583. 

[17] 17. Halper, F., Advanced analytics: Moving toward AI, machine learning, and natural 

language processing. TDWI Best Practices Report, 2017. 

[18] 18. Kazemitabaar, M., et al. Studying the effect of AI code generators on supporting 

novice learners in introductory programming. In Proceedings of the 2023 CHI Conference on 

Human Factors in Computing Systems. 2023. 

[19] 19. Pantin, C., The Impact of AI-generated Code on the Future of Junior Developers. 

2024. 

[20] 20. Patel, A., K.Z. Sultana, and B.K. Samanthula. A Comparative Analysis between AI-

Generated Code and Human Written Code: A Preliminary Study. in 2024 IEEE International 

Conference on Big Data (BigData). 2024. IEEE. 

[21] 21. Li, C., C. Treude, and O. Turel, Do Comments and Expertise Still Matter? An 

Experiment on Programmers' Adoption of AI-Generated JavaScript Code. arXiv preprint 

arXiv:2503.11453, 2025. 

[22] 22. Khan, I., and Y.-W. Kwon. A Structural-Semantic Approach Integrating Graph-

Based and Large Language Models Representation. in ICT Systems Security and Privacy 

Protection: 39th IFIP International Conference, SEC 2024, Edinburgh, UK, June 12–14, 2024, 

Proceedings. 2024. Springer Nature. 

[23] 23. Mukesh, M. and R. Lavanya, Exploring UI/UX designer’s & developers’ 

perceptions and utilization of AI-generated tools in web development. 2024. 

[24] 24. Wang, R., et al. Investigating and designing for trust in AI-powered code generation 

tools. in Proceedings of the 2024 ACM Conference on Fairness, Accountability, and 

Transparency. 2024. 

 


