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Abstract  

The primary focus of this paper is the presentation of Runge-Kutta's method as a method for 

addressing initial value problems (IVP) in ordinary differential equations (ODE). This method 

demonstrates practical efficiency and suitability for addressing these problems. To ensure 

accuracy, we perform comparisons between numerical solutions and exact solutions. The 

numerical solutions are in good agreement with the exact solutions. To obtain greater solution 

accuracy the step size must be reduced to extremely small values. Our investigation reaches its 

terminus as we examine and calculate the discrepancies in Runge-Kutta's method across various 

step sizes. 

Introduction 

A differential equation represents a mathematical expression that incorporates independent 

variables alongside dependent variables and their respective derivatives concerning those 

independent variables. A differential equations order corresponds to the highest derivative present 

while its degree represents the power of this highest derivative once all fractional and negative 

exponents have been eliminated. An ordinary differential equation classifies as linear when it lacks 

any occurrence of the dependent variable multiplied by itself or its derivatives, whereas its 

presence renders the equation nonlinear. The solutions to the nth order equation depend on n 

parameters. Determining these parameters requires the provision of n conditions. The presence of 

these n conditions at a singular point defines the differential equation and its conditions as an nth 
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order initial value problem. A problem becomes a boundary value problem (BVP) when n 

conditions are specified at multiple points. Science and engineering mathematical problems often 

rely on numerical methods because obtaining exact solutions proves difficult or impossible. The 

set of differential equations that permit analytical solutions remains severely restricted. Numerous 

analytical techniques exist to determine solutions for ordinary differential equations. A vast array 

of ordinary differential equations defies closed-form solutions through established analytical 

techniques, necessitating the application of numerical methods to obtain approximate solutions 

under specified initial conditions. A diverse array of practical numerical methods exists to address 

initial value problems in ordinary differential equations. This document introduces Runge-Kutta's 

Method as a technique to address initial value problems in ordinary differential equations. The 

examination of existing studies reveals numerous investigations into numerical solutions of initial 

value problems through the Runge-Kutta's method have been performed. Numerous authors have 

explored various methods including Runge-Kutta's method to achieve rapid high-accuracy 

solutions for IVP. The works by [1]-[13] explored numerical solutions for initial value problems 

in ordinary differential equations through Runge-Kutta's method alongside several other numerical 

techniques. 

Runge-Kutta’s Method 

A complex set of iterative technique known as the Runge-Kutta’s methods exits to represent ODEs. 

Numerical analysts favor their application because these methods deliver both exceptional 

performance and precise results. Among the methods in this family the RK4 method stands out as 

the most frequently utilized member and is commonly known as RK4. Runge-Kutta's method 

approximate the solution of an IVP of the form  

𝑑𝑦

𝑑𝑥
 = f(x, y) 

y (x0) = y0 

Where y is unknown function of x. The RK4 method is one of the most popular and widely used 

numerical methods for solving ODEs. It provides good valance between computational efforts and 

accuracy. Compute the slopes. 

k1= f (xn,yn) 

k2= f (xn+
ℎ

2
, yn+

ℎ

2
 k1) 
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k3=f (xn+
ℎ

2
, yn+

ℎ

2
 k2) 

k4=f (xn+h, yn+hk3) 

So yn+1 = yn + 
ℎ

6
 (k1+2k2+2k3+k4) 

Use yn+1 as the new initial value and repeat the process for the next time step. 

Now we use Runge-Kutta's method to numerically integrate equation is  

𝑑𝑦

𝑑𝑥
= −𝑦 + 𝑒−𝑥     y (0) = 1 

It is a non homogeneous first order linear ODE where x=0 to x=2 with a step size h=0.5 

The initial condition at x=0 is y=1 

The exact solution is y=𝑒−𝑥  

The true solution and Runge-Kutta's method solution at x=0.5 is given by 0.60653 and 0.60680 

Error % = (
𝐸−𝑇

𝐸
 ) X 100 % 

            = ( 
0.60680−0.60653

0.60680
)𝑋100 

            = 0.04 % 

For 2nd step the true solution and solution by Runge-Kutta's method at x=0.5 has been find out. 

The computation is repeated and the results are compiled in table as shown below. 

xi Ytrue Y Rungekutta % Relative Error 

0.0 1.00000 1.000000 0.0 % 

0.5 0.60653 0.60680 0.04 % 

1.0 0.36788 0.36810 0.06 % 

1.5 0.22313 0.22330 0.08 % 

2.0 0.13534 0.13550 0.12 % 

 

Table 

Comparison of ytrue and yR.K values of integral of y' = −𝑦 + 𝑒−𝑥 with initial conditions that y=1 at 

x=0.the approximate values were computed using Runge-Kutta's method with a step size of h = 

0.5 
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Error Analysis of Runge-Kutta's method 

Initial proximity results in more accurate approximations which become more precise as distance 

increases. Somehow greater accuracy emerges when the points used in approximation become 

more densely packed together. Apparently, the approximation exceeds the actual curve for concave 

down functions while it falls below the actual curve for concave up functions. Runge-Kutta's 

method especially RK4 is highly accurate numerical method for solving ODEs normally. The 

dependence of RK4 accuracy on both the specific ODE characteristics and its precise solution 

emerges in complex ways. When the exact solution of an ODE is a polynomial of degree n and the 

RK4 method used has degree m where        m ≥ n, results typically show no errors. The RK4 method 

typically produces precise outcomes when applied to polynomials with degrees up to four. When 

the exact solution represents an exponential function such as 𝑒−𝑥the RK4 method produces highly 

precise results despite not being entirely error free because of its inherent qualities. The Runge-

Kutta's method shows exceptional performance with its relative errors staying well within 

acceptable boundaries despite minor increases. The method demonstrates exceptional accuracy in 

replicating true solution behavior throughout the interval which makes it a prevalent choice for 

ordinary differential equation solving. To address higher precision problems, one might consider 

employing refinement strategies or higher-order methods. Through the inclusion of additional 

terms in their approximations, higher-order Runge-Kutta's methods achieve enhanced accuracy. 

Adaptive step size techniques enable methods to modify step size dynamically using local error 
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estimates to achieve a balance between accuracy and computational efficiency. The Runge-Kutta's 

method stands as a dependable and sturdy numerical instrument for ordinary differential equation 

solutions where its minimal relative errors demonstrate both precision and effectiveness. The 

process of finding numerical solutions for ordinary differential equations introduces two distinct 

error types: truncation error and round-off error. Truncation error emerges in numerical analysis 

when an infinite sum gets truncated and represented as a finite sum. A computer's restricted 

capacity to maintain significant digits leads to round-off errors. Truncation errors consist of two 

distinct components: one being the local truncation error which arises from method application 

during a single step, and the other being the propagated truncation error which emerges from 

approximations generated in preceding steps. The accuracy of calculations faces immediate 

disruption from local truncation error while propagated truncation error builds up and impacts 

results over extended periods. The combined truncation error represents the aggregate of these two 

distinct errors. 

Conclusion 

The accuracy of approximations tends to increase as you move away from initial close proximity. 

The proximity of approximation points paradoxically enhances accuracy. When dealing with 

concave down functions your approximation exceeds the actual curve while for concave up 

functions it falls short of the actual curve. The Runge-Kutta's method including RK4 stands as an 

exceptionally precise numerical approach for solving ordinary differential equations under 

standard conditions. The reliability of RK4 method strangely relies on the specific characteristics 

of the ODE and its precise solution. When the exact solution of an ODE is a polynomial with 

degree n and the RK4 method applied has a degree m where       m ≥ n, we typically obtain results 

without errors. The RK4 method typically delivers precise outcomes when applied to polynomials 

of degree 4 or lower. When dealing with an exact solution such as the exponential function 𝑒−𝑥the 

RK4 method fails to achieve absolute error elimination yet delivers exceptionally precise outcomes 

because of its ostensibly high order approximation. 
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